

NATIONAL JUNIOR COLLEGE SENIOR HIGH 2

	Н	ig	he	r	2
--	---	----	----	---	---

N	Δ	N۸	
N	\boldsymbol{H}	IVI	

CLASS

2ma	2
	_

REGISTRATION NUMBER

- 1		- 1		
- 1		- 1		
- 1		- 1		
- 1		- 1		
- 1	1	- 1	- 1	
			[

MATHEMATICS

9758/01

Preliminary Examination

09 September 2024

Paper 1

3 hours

Candidates answer on the Question Paper.

Additional Materials:

List of Formulae (MF26)

READ THESE INSTRUCTIONS FIRST

Write your name, class and registration number in the boxes above. Please write clearly and use capital letters.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use paper clips, glue or correction fluid.

Answer all the questions.

Write your answers in the spaces provided in the question paper. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved graphing and/or scientific calculator is expected, where appropriate.

All relevant working, statements and reasons must be shown in order to obtain full credit for your solution.

You are reminded of the need for clear presentation in your answers. Up to 2 marks may be deducted for improper presentation.

The number of marks is given in the brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

Question Number	Marks Possible	Marks Obtained
1	4	
2	4	
3	5	
4	7	
5	8	
6	8	~
7	8	·
8	9	· -
9	10	
10	11	,
11	12	
12	14	
Presentation	Deduction	-1/-2
TOTAL	100	

This document consists of 7 printed pages.

A circular sector has radius r cm and angle θ radians. This sector has area A cm² and fixed perimeter k cm.

(i) Show that
$$\frac{dA}{dr} = \frac{k}{2} - 2r$$
. [2]

- (ii) Given that r is increasing at a constant rate of $\frac{k}{10}$ cm s⁻¹, find in terms of k, the rate at which A is changing when the arc length of the sector is equal to the radius. [2]
- Two of the roots of the equation $z^3 + az^2 + bz + c = 0$ are $3e^{i\left(-\frac{2}{3}\pi\right)}$ and -2. Given further that a, b and c are integer constants, find the values of a, b and c. [4]
- 3 Do not use a calculator to solve this question.

(i) Solve the inequality
$$\frac{x-6}{4x^2+x-5} \ge 1$$
. [3]

(ii) Hence solve the inequality
$$\frac{x-6x^2}{4+x-5x^2} \ge 1$$
. [2]

A Relative to the origin O, points A, B and C have position vectors a, b and c respectively, where a, b and c are non-zero vectors that are not parallel to one another. The points A, B and C are not collinear.

A point of trisection is a point that divides a line segment internally in the ratio 1:2 or 2:1. Suppose another two points D and E are points of trisection of line segments AB and AC respectively and both points are nearer to A than to B and C respectively. The lines BE and CD meet at point F.

- (i) Show that the vector equations of the lines BE and CD can be expressed as $\mathbf{r} = \frac{2}{3}\lambda\mathbf{a} + (1-\lambda)\mathbf{b} + \frac{1}{3}\lambda\mathbf{c}$ and $\mathbf{r} = \frac{2}{3}\mu\mathbf{a} + \frac{1}{3}\mu\mathbf{b} + (1-\mu)\mathbf{c}$ respectively, where λ and μ are parameters. Hence, show that at point F, $\alpha\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c} = \mathbf{0}$, where α , β and γ are constants, each to be expressed in terms of λ and μ .
- (ii) Given further that *OACB* is a parallelogram, find the position vector of F in terms of a and b. [3]

5 [The volume of a cone of base radius r and height h is given by $V = \frac{1}{3}\pi r^2 h$.]

A manufacturer makes a funnel-shaped ornament from the same material which consists of two parts as shown in **Figure 1**.

- a right cone of radius r cm, height h cm and a slant height of 4 cm,
- a cylinder with radius ar cm and height r cm, where 0 < a < 1.

Figure 2

Figure 3

Figure 3

From the original cone, a similar cone with radius ar cm is removed from the vertex as shown in Figure 2. The remaining part of the cone is joined to the cylinder to form the funnel as shown in Figure 3. It may be assumed that the thickness of the funnel is negligible.

Given that the volume of the ornament is $V \text{ cm}^3$, find V in terms of a and r. [3]

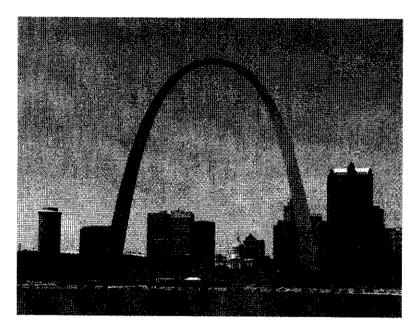
For the remainder of this question, assume that a = 0.25.

- (a) The manufacturer wants V to be a maximum. If $r = r_i$ gives the maximum value of V, show that r_1 satisfies the equation $457r^4 9664r^2 + 50176 = 0$. [3]
- (b) Show that one of the positive roots to the equation in part (a) does not give a stationary value of V. Hence find the value of h for which V is stationary. [2]
- 6 (i) Show that $\frac{e^{i\theta}}{1-e^{i\theta}}$ can be expressed as $k\left(i\cot\frac{\theta}{2}-1\right)$, where k is a real constant to be determined exactly. [3]
 - (ii) Express the complex number i in three equivalent $re^{i\theta}$ forms, where r > 0 and $-3\pi < \theta \le 3\pi$.
 - (iii) Hence find the roots of the equation $\left(\frac{w}{w+1}\right)^3 i = 0$, leaving your answers in the form $k(\cot \phi 1)$, where $-\frac{\pi}{2} < \phi \le \frac{\pi}{2}$.

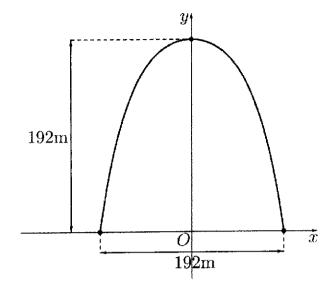
7 (i) Given that
$$y = \csc\left(2x + \frac{\pi}{4}\right)$$
, show that $\frac{d^2y}{dx^2} = 8y^3 - 4y$. [3]

- (ii) By further differentiation of the result in part (i), find the first four terms of the Maclaurin series for $\csc\left(2x + \frac{\pi}{4}\right)$ exactly. [3]
- (iii) Hence estimate the value of $\csc\left(\frac{13\pi}{50}\right)\cot\left(\frac{13\pi}{50}\right)$, giving your answer in the form $\sqrt{2}(p+q\pi+r\pi^2)$, where p, q and r are rational constants to be determined. [2]
- 8 (a) The sum, S_n , of the first *n* terms of a sequence of numbers u_1, u_2, u_3, \ldots , is given by

$$S_n = An^2 + Bn + 2^{n+1},$$


where A and B are non-zero constants. It is also given that the third term is 21 and the fifth term is 53. Find a simplified expression for u_n in terms of n. [4]

- (b) (i) Use the method of differences to show that $\sum_{r=1}^{n} \ln \left(\frac{r(r+2)}{(r+1)^2} \right) = \ln \left(\frac{n+2}{n+1} \right) \ln 2.$ [3]
 - (ii) Hence, find the exact value of $\sum_{r=0}^{n} \ln \left(\frac{r^2 + 4r + 3}{(r+2)^2} \right)$ in terms of n. [2]
- 9 (a) Show that the curve with equation $y = (x^2 + cx)e^{-x}$ has two stationary points for all real values of c. [3]
 - (b) The curves C_1 and C_2 have equations $x^2 + 4y^2 6x 7 = 0$ and $y = \frac{2x 3}{x 1}$ respectively. Write the equation of C_1 in the form $\frac{(x - p)^2}{a^2} + \frac{(y - q)^2}{b^2} = 1$. Sketch, on the same diagram, both C_1 and C_2 , indicating clearly their key features as well as the coordinates of their points of intersection.


10 The function f is defined by

$$f(x) = (x+1)|x+1|$$
, for $x \in \mathbb{R}, -4 < x \le 2$.

- (i) Find f^{-1} . [4]
- (ii) On the same diagram, sketch the graphs of y = f(x), $y = f^{-1}(x)$ and $y = ff^{-1}(x)$, labelling clearly the coordinates of the end-points. [4]
- (iii) Solve exactly the inequality $f(x) \le f^{-1}(x)$. [3]
- The diagram below shows the Gateway Arch, which is a monument in St. Louis, Missouri, United States. The arch stands at 192 metres tall and is 192 metres wide.

The arch can be modelled by part of a curve as shown in the diagram below.

The highest point of the curve lies on the y-axis and the curve is symmetrical about the y-axis. The two endpoints both lie on the x-axis. It is known that the curve satisfies the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = ak\sqrt{1 + \left(\frac{1}{k}\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}$$

for some constants a and k.

(i) Show that the substitution $p = \frac{1}{k} \frac{dy}{dx}$ reduces the differential equation to

$$\frac{\mathrm{d}p}{\mathrm{d}x} = a\sqrt{1+p^2}.$$
 [1]

(ii) By using the substitution $p = \tan u$, where $-\frac{\pi}{2} < u < \frac{\pi}{2}$, to solve the reduced differential equation in part (i), show that

$$p = \frac{e^{ax} - e^{-ax}}{2}.$$
 [8]

(iii) Given that a = -0.0329 and k = 0.701, find y in terms of x. [3]

12 The planes π_1 and π_2 , which meet in the line l_1 , have equations

$$\pi_1 : \mathbf{r} \cdot \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = 25 \text{ and } \pi_2 : x + ky - 2z = -15,$$

where k is a constant.

Another line
$$l_2$$
 has equation $\mathbf{r} = \begin{pmatrix} -15 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \ \beta \in \mathbb{R}.$

- (i) Determine the position vector of the point on l_1 such that the coordinates of this point is independent of k. Hence find a vector equation of l_1 .
- (ii) Determine the possible value(s) of k such that l_1 and l_2 are skew. [3]

Assume that k = 4 for the rest of this question.

- (iii) Points A and B are on l_1 and l_2 respectively such that \overrightarrow{AB} is perpendicular to both lines. Show that $|\overrightarrow{AB}| = \sqrt{\frac{p}{2}}$, where p is an integer to be determined. [3]
- (iv) Find exactly the sine of the acute angle between l_2 and π_1 . [2]

It is given further that l_2 lies on a third plane that is perpendicular to l_1 , and l_2 intersects π_1 at point P.

(v) Deduce the shortest distance from
$$P$$
 to l_1 . [2]

NATIONAL JUNIOR COLLEGE SENIOR HIGH 2 Higher 2

NAME					
CLASS	2ma2	REGISTRATION NUMBER			

MATHEMATICS

9758/02

Preliminary Examination

16 September 2024

Paper 2

3 hours

Candidates answer on the Question Paper.

Additional Materials:

List of Formulae (MF26)

READ THESE INSTRUCTIONS FIRST

Write your name, class and registration number in the boxes above. Please write clearly and use capital letters.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use paper clips, glue or correction fluid.

Answer all the questions.

Write your answers in the spaces provided in the question paper. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved graphing and/or scientific calculator is expected, where appropriate.

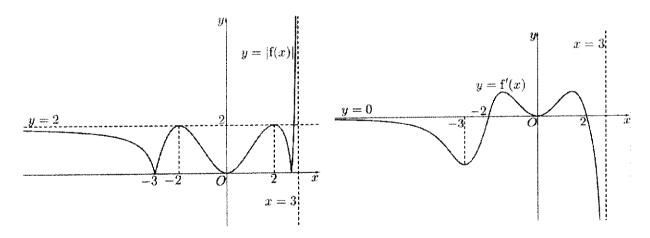
All relevant working, statements and reasons must be shown in order to obtain full credit for your solution.

You are reminded of the need for clear presentation in your answers. Up to 2 marks may be deducted for improper presentation.

The number of marks is given in the brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

Question Number	Marks Possible	Marks Obtained
1	4	
2	6	
3	9	
4	10	
5	11	
6	4	
7	4	-
8	6	<u></u>
9	10	
10	10	
11	13	
12	13	
Presentation	Deduction	-1/-2
TOTAL	100	


Section A: Pure Mathematics [40 marks]

1 The complex numbers z and w satisfy the following equations.

$$w^* = z - 2i$$
$$wz^* = |w|^2 + 6i$$

Find z and w, giving your answers in the form a + ib where a and b are real numbers. [4]

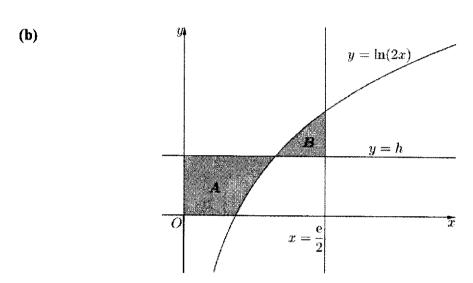
- An arithmetic series has first term a and common difference d, where a and d are non-zero. A convergent geometric series has first term b and common ratio r, where b is positive and r is non-zero. It is given that the fourth and ninth terms of the arithmetic series are equal to the sixth and ninth terms of the geometric series respectively and the eleventh term of the arithmetic series is br^6 less than the fourteenth term of the geometric series.
 - (i) Show that r satisfies the equation $5r^8 7r^3 5r + 2 = 0$ and solve this equation, giving your answer correct to 4 decimal places. [4]
 - (ii) Using this value of r, deduce that for any positive integer n, the sum of the terms of the geometric series after, but not including, the nth term is less than $\frac{3}{5}b$. [2]
- 3 The graphs of y = |f(x)| and y = f'(x) are given below respectively.

On separate diagrams, sketch the graphs of

(i)
$$y = f(x)$$
, [3]

(ii)
$$y = |f(2-x)|,$$
 [3]

(iii)
$$y = \frac{1}{f'(x)},$$
 [3]


indicating clearly the equations of asymptotes, turning points, axial intercepts and end-points, where applicable and possible.

4 (a) It is given that
$$f(x) = \begin{cases} \sin\left(\frac{x}{2}\right), & \text{for } 0 \le x \le 3\pi, \\ \frac{x}{\pi} - 4, & \text{for } 3\pi < x < 4\pi \end{cases}$$

and that $f(x) = f(x+4\pi)$ for all real values of x.

(i) Sketch the graph of
$$y = f(x)$$
 for $-\frac{\pi}{2} \le x \le 6\pi$. [3]

(ii) Find
$$\int_{-\frac{\pi}{2}}^{6\pi} |f(x)| dx$$
, leaving your answer in exact form. [2]

From the diagram above, the region A is bounded by the curve $y = \ln(2x)$, the line y = h, $h \in \mathbb{R}$, the x-axis and the y-axis while the region B is bounded by the curve $y = \ln(2x)$ and the lines $x = \frac{e}{2}$ and y = h. Given that the volumes of the solids generated when A and B are rotated completely about the y-axis are equal, find the exact value of h.

5 In this question, it is given that a is a positive constant. Leave all answers in terms of a where necessary.

(a) Find
$$\int \frac{x}{\left(1+ax^2\right)^2} dx$$
. Hence find $\int \frac{ax^2}{\left(1+ax^2\right)^2} dx$. [5]

(b) Use the substitution
$$x = \frac{1}{y}$$
 to find the exact value of $\int_{\sqrt{2}a}^{2a} \frac{1}{x\sqrt{x^2 - a^2}} dx$. [6]

Section B: Probability and Statistics [60 marks]

- For a positive integer n, it is given that P(A=n)=0.009542 and P(A=n+1)=0.004090, where $A \sim B(2n+1, p)$. Show that p satisfies an equation of the form $\frac{p}{1-p}=k$, where k is a constant to be determined. Hence find the value of p and the variance of p. [4]
- 7 A random variable X has mean μ and variance 36.

A random sample of n independent observations of X is taken and the sample mean is denoted by \overline{X} . Find the least value of n such that $P(|\overline{X} - \mu| < 0.5) > 0.98$, stating any assumptions needed at the start of your calculations.

At a funfair game stall, players are allowed to choose two cards at random from six cards, with each card labelled with one letter from A to F. The player's score, denoted by X, is the Manhattan distance between the two squares corresponding to the player's two chosen letters on the grid below,

A	В	C
D	E	F

where the Manhattan distance between two squares is the minimum total number of horizontal and vertical steps required to travel between them. For example, the Manhattan distance between B and F is 2, while the Manhattan distance between D and C is 3.

(i) Tabulate the probability distribution of
$$X$$
.

[2]

The stall owner charges \$10 per game and rewards the player with a cash prize, in dollars, of $\frac{k}{10}$ times of the square of the player's score, where k is a positive integer.

(ii) Determine the largest value of k for the stall to be profitable in the long run. [4]

A factory manufactures cans and bottles of iced tea. Machine A is used to fill the cans with iced tea and Machine B is used to fill the bottles with iced tea. Machine A is set to fill each can with 300 millilitres (ml) of iced tea. A random sample of 60 filled cans of iced tea was taken and the volume, x ml, of iced tea in each can was measured. The following summarised data was obtained.

$$\sum (x-300) = -112.8$$
, $\sum (x-300)^2 = 4532.87$

- (a) Defining clearly any symbols you use, test at the 8% level of significance, whether the mean volume of iced tea per can is 300 ml.

 [6]
- (b) Explain in the context of the question, the meaning of 'at the 8% level of significance'.
- (c) The manager of the factory claims that the mean volume of iced tea that Machine B fills per bottle with is at least 500 ml. It is found that the volumes of iced tea in the bottles filled by Machine B follow a normal distribution with standard deviation 5 ml. A random sample of 35 filled bottles was taken and a test for the validity of the manager's claim was carried out at the 4% level of significance. Find the critical region for this test, correct to 1 decimal place.
- Webflix is a video streaming service. The numbers of Webflix subscribers worldwide, y (in ten millions), for years from 2015 to 2023 are given in the following table. The variable x is the number of years after a base year of 2013.

Year	2015	2016	2017	2018	2019	2020	2021	2022	2023
x	2	3	4	5	6	7	8	9	10
<u>y</u>	4.23	5.01	6.62	11.92	16.71	20.21	24.01	25.08	25.18

(a) Draw a scatter diagram for these values, labelling the axes.

[1]

A statistician theorises that the number of subscribers can be modelled by one of the formulae

C:
$$y = a \ln x + b$$

$$D: y = ax^2 + b$$

- (b) Find, correct to 4 decimal places, the value of the product moment correlation coefficient
 - (i) between y and $\ln x$,

[1]

(ii) between y and x^2 .

 $\lceil 1 \rceil$

- (c) Explain which model, C or D, gives a better fit to the data and find the equation of the regression line for this model. [3]
- (d) Use the equation of the regression line to estimate the number of subscribers in 2024 correct to 4 significant figures and explain whether your estimate is reliable. [2]
- (e) Comment on the suitability of using this model in the long run.

[2]

11 (a) Four male students and four female students stand in two straight rows, four at the front and four at the back, to take a group photo. Among the eight of them, three of them are from the same class and all other students are from different classes.

How many ways can this be done if

- (i) not all the students in the same class are standing next to one another in the same row. [3]
- (ii) in each row, the boys and girls alternate? [3]
- (b) A sports committee in a school comprises team leaders from four different classes. There are 6 team leaders from Class Grace, 4 team leaders from Class Hope, 5 team leaders from Class Joy and 3 team leaders from Class Piety. A teacher wants to form a working party of 7 team leaders to take charge of a carnival.
 - (i) Find the probability that in the party, there is at least 1 team leader from each of the 4 classes and there are more team leaders from Class Piety than from any other classes. [4]
 - (ii) The selected working party comprises 3 team leaders from Class Grace, 2 team leaders from Class Hope and 1 team leader each from Class Joy and Class Piety. The working party and the teacher sit around a round table in the library for discussion. Find the probability that the teacher sits in between 2 team leaders from the same class.

 [3]

12 In this question you should state the parameters of any distribution you use.

An electric power service company keeps records of the installation time of its electricity meters in the houses in a new estate. The time taken to install an electricity meter is normally distributed with mean 45 minutes and standard deviation 6 minutes.

- (a) Sketch the distribution for the installation time of an electricity meter between 20 minutes and 70 minutes. [2]
- (b) A house that has its electricity meter take more than 1 hour to be installed is considered 'inefficient'. The company randomly selects n houses in the estate for quality control in their services. Find the greatest value of n such that the probability that fewer than 3 of these n houses are 'inefficient' is at least 0.90.
- (c) Each month, the amount of electricity, in kilowatt-hours (kWh), used by a particular household in the estate has the distribution N(524, 27²). The company charges households for electricity used at \$0.26 per kWh and each household is billed every two months. Find the probability that a randomly chosen bill for this household is more than \$270 given that it is between \$250 and \$280. State an assumption that is needed for your calculations to be valid.
- (d) The company also installs gas meters in the houses in the estate. The time taken in minutes to install a gas meter follows a normal distribution. 40% of the gas meters each has an installation time greater than 53 minutes and 15% of the gas meters each has an installation time less than 38 minutes. Find the mean and standard deviation of the installation times of the gas meters in the estate.

 [4]

Question 1 (Connected Rates of Change)

€	(i) $k = r\theta + 2r = r(\theta + 2) \Rightarrow \theta + 2 = \frac{k}{r} \Rightarrow \theta = \frac{k}{r} - 2$	Interestingly, many students could derive the formula
	$A = \frac{1}{2}r^2\theta = \frac{1}{2}r^2\left(\frac{k}{r} - 2\right) = \frac{kr}{2} - r^2$	$A = \frac{1}{2}r^2\theta$ by considering
	$\frac{dA}{dx} = \frac{k}{2} - 2r$	$A = \frac{\theta}{2\pi} \times \pi r^2$ but not many could
	v 3	do so similarly for the arc length formula $s = r\theta$. As a result,
		there are many students who
		result.
	d/ (k ,)dr	This part of the question is better
€	$\frac{dt}{dt} = \left(\frac{2}{2} - \frac{2t}{dt}\right) \frac{dt}{dt}$	performed than the previous part
	$= \left(\frac{k}{k} - 2 \times \frac{k}{k}\right) \frac{k}{k}$	as aimost the whole cohort is able to relate the rates of change.
	(2 3)10	However, many could not apply
	K-2	the information that "arc length
	S	is equal to the radius" in a useful
	8	manner.

Question 2 (Systems of Linear Equations)

$(-2)^3 + \alpha(-2)^2 + b(-2) + c - 0$	Both methods were fairly common
$\frac{1}{2} \frac{1}{2} \frac{1}$	Many careless mistakes were made in
0=2+07-p++0-<	calculations.
$\Rightarrow 4a - 2b + c = 8 - (1)$	
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	common mistakes: *Not stating "Since the coefficients of
$\begin{vmatrix} 3e^{(3)} \\ 4a \end{vmatrix} + a \begin{vmatrix} 3e^{(3)} \\ 4a \end{vmatrix} + b \begin{vmatrix} 3e^{(3)} \\ 4a \end{vmatrix} + c = 0$	the polynomial are all real" when using the Conjugate Root Theorem
(4) (1)	* Incorrect conversion of complex
$27e^{4-2a} + 9ae^{-3/3} + 3be^{-3/4}c = 0$	numbers from exponential form to
$27 + 9a\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + 3b\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) + c = 0$	quadrant the complex number is in.)
	to cartesian form (in the first method).
$\left(27 - \frac{2}{2}a - \frac{3}{2}b + c\right) + \left(\frac{3\sqrt{3}}{2}a - \frac{3\sqrt{3}}{2}b\right)i = 0$	* Writing " $z = 3e^{i\left(-\frac{2}{3}\pi\right)}$ is a root".
	1 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
	(Should be 3e of $i \left(-\frac{2}{\pi} \pi \right)$
	" $z = 3e^{\left(\frac{3}{3}\right)}$ is a solution").
$\frac{9\sqrt{3}}{2}a - \frac{3\sqrt{3}}{2}b = 0 \Rightarrow 3a - b = 0 (3)$	
Solving (1), (2) and (3) with the (3C., we get $a = 5$, $b = 15$, $c = 18$.	
A from stive Mathred	
$\frac{1}{2a(-\frac{1}{2}\pi)} - 1 \left(-\frac{1}{1}\sqrt{3}\right) = 3 \sqrt{3}$.	
$\left[-\frac{3}{2} \left(-\frac{2}{2} - \frac{1}{2} \right) = -\frac{3}{2} - \frac{3}{2} \right]$	
Since all coefficients of the polynomial are real, then	
$-\frac{5}{2} + \frac{5\sqrt{3}}{2}$ is also a root of the equation by the Conjugate	
Root Theorem. Therefore,	
$\frac{z^3 + az^2 + bz + c}{}$	
(2 2.13)(2 2.13)	
$=(z+2)\left(z+\frac{3}{2}+\frac{3\sqrt{3}}{2}i\right)\left(z+\frac{3}{2}-\frac{3\sqrt{3}}{2}i\right)$	
((3) ² 9(3))	
$=(z+2)\left(\frac{z+-}{2}+\frac{-\frac{z+-}{4}}{4}\right)$	
$=(z+2)(z^2+3z+9)$	
$= z^3 + 5z^2 + 15z + 18$	
Therefore $a = 5$, $b = 15$, $c = 18$	

Question 3 (Inequalities)

	Therefore, $-\frac{5}{4} < x < 1$ since $x \neq -\frac{5}{4}$ and $x \neq 1$
	4
	since $-4x^2 - 1 \le 1 < 0$ for all $x \in \mathbb{R}$
4	$\Rightarrow (4x+5)(x-1) \le 0$
of solutions $x < -\frac{5}{3}$ or $1 < x$	$\Rightarrow (4x+5)(x-1)(-4x^2-1) \ge 0$
x Incorrect evaluation of signs in the number line, leading to incorrect range	$\Rightarrow (4x^2 + x - 5)(-4x^2 - 1) \ge 0$
original inequality 0, so they need to be excluded.	$\Rightarrow (4x^2 + x - 5)[(x - 6) - (4x^2 + x - 5)] \ge 0$
values make the denominator in the	$\Rightarrow (x-6)(4x^2+x-5) \ge (4x^2+x-5)^2$
*Inclusion of $x = -\frac{1}{4}$ and $x = 1$ in the	$\frac{x-6}{4x^2+x-5} \ge 1$
Common mistakes:	Method 2
	since $4x^2 + 1 \ge 1 > 0$ for all $x \in \mathbb{R}$
determination of the critical values.	$\Rightarrow (4x+5)(x-1) \leq 0$
factorise $4x^2+1$. Please note that	$\Rightarrow \frac{4x+1}{(4x+5)(x-1)} \le 0$
There are some candidates who tried to	$\frac{3}{4x^2 + x - 5} = 0$
numerator as $4x^2 - 1$.	$4x^2+1$
Some candidates made mistakes in the	$\Rightarrow \frac{-4x^2-1}{4x^2+x-5} \ge 0$
well.	$\Rightarrow \frac{4x^2 + x - 5}{} \ge 0$
into $(4x+5)(x-1)$ is often seen as	S
The correct factorisation of $4x^2 + x - 5$	$\Rightarrow \frac{x-6}{4x^2+x-5}-1 \ge 0$
the inequality to $\frac{-4x^2-1}{4x^2+x-5} \ge 0$.	$\frac{x-5}{4x^2+x-5} \ge 1$
Many candidates correctly simplified	(i) Method 1

Ë
Ë
퓽
Š
Ξ
4
5
ၽ
್ತ
=
-

$\begin{array}{c} 1 & 1 \\ D & 1 \\ \end{array}$	
Using Ratio Theorem, $ \frac{BE}{3} $ $ = \frac{1}{3} (\overrightarrow{BC} + 2 \overrightarrow{BA}) $	Many students could find the vectors \overline{BE} and \overline{CD} . However, some used vector addition to find the 2 vectors, which is very tedious.
$=\frac{1}{3}(\mathbf{c}-\mathbf{b}+2(\mathbf{a}-\mathbf{b}))$ $=\frac{1}{3}\mathbf{c}+\frac{2}{3}\mathbf{a}-\mathbf{b}$ $=\frac{1}{CD}$ $=\frac{1}{(CB+2CA)}$	Common mistakes: * Some students do not know the difference between the direction vector \$\overline{BE}\$ and equation of the line \$BE\$. * Some students regarded a, b, c as vectors i, j, k and wrote
$\frac{3}{3} \left(\frac{1}{2} - c + 2(a - c) \right)$ $= \frac{1}{3} \left(b - c + 2(a - c) \right)$ $= \frac{1}{3} b + \frac{2}{3} a - c$	$\frac{1}{3}\mathbf{c} + \frac{2}{3}\mathbf{a} - \mathbf{b} = \begin{bmatrix} \frac{3}{3} \\ \frac{3}{3} \end{bmatrix}$
$I_{BE} : \mathbf{r} = \mathbf{b} + \lambda \left(\frac{1}{3} \mathbf{c} + \frac{2}{3} \mathbf{a} - \mathbf{b} \right)$ $= \frac{2}{3} \lambda \mathbf{a} + (1 - \lambda) \mathbf{b} + \frac{1}{3} \lambda \mathbf{c}, \lambda \in \mathbb{R} \text{ (shown)}$ $I_{CD} : \mathbf{r} = \mathbf{c} + \mu \left(\frac{1}{3} \mathbf{b} + \frac{2}{3} \mathbf{a} - \mathbf{c} \right)$	* Many students did not understand the requirements of the question. They compared the coefficients of non-parallel vectors \mathbf{a} , \mathbf{b} , \mathbf{c} at this stage: $\frac{2}{3}\lambda \mathbf{a} + (1-\lambda)\mathbf{b} + \frac{1}{3}\lambda \mathbf{c}$
$= \frac{2}{3} \mu a + \frac{1}{3} \mu b + (1 - \lambda) c, \ \mu \in \mathbb{R} \text{ (shown)}$ At F , $\frac{2}{3} \lambda a + (1 - \lambda) b + \frac{1}{3} \lambda c = \frac{2}{3} \mu a + \frac{1}{3} \mu b + (1 - \lambda) c$ $\left(\frac{2}{3} \lambda - \frac{2}{3} \mu\right) a + \left(1 - \lambda - \frac{1}{3} \mu\right) b + \left(\frac{1}{3} \lambda + \mu - 1\right) c = 0$	$= \frac{2}{3}\mu a + \frac{1}{3}\mu b + (1-\lambda)c$ As a result, they failed to obtain the required expression.

(ii) If OACB is a parallelogram,	This part was usually either not
c=a+b	attempted or very badly done. Most
$\left(\frac{2}{2}\lambda - \frac{2}{2}u\right)\mathbf{a} + \left(1 - \lambda - \frac{1}{2}u\right)\mathbf{b} + \left(\frac{1}{2}\lambda + u - 1\right)\mathbf{c} = 0$	students could not recognise that $c = a + b$.
(3 3') (3')	Common mistakes:
$\left(\frac{2}{3}\lambda - \frac{2}{3}\mu\right)\mathbf{a} + \left(1 - \lambda - \frac{1}{3}\mu\right)\mathbf{b} + \left(\frac{1}{3}\lambda + \mu - 1\right)(\mathbf{a} + \mathbf{b}) = 0$	*Many did not read the question and stonned at the sten
$\left[\left(\frac{2}{3} \lambda - \frac{2}{3} \mu + \frac{1}{3} \lambda + \mu - 1 \right) \mathbf{a} + \left(1 - \lambda - \frac{1}{3} \mu + \frac{1}{3} \lambda + \mu - 1 \right) \mathbf{b} = 0 \right]$	
$(2, 1, -1)_{\alpha, 1}(2, -2)_{\alpha, \alpha, 0}$	*Many used c = a -b instead.
$(x+\frac{3}{3}t^{-1})^{4}+(\frac{3}{3}t^{-3}x)^{6}=0$	
Since a and b are not parallel to each other and non-zero vectors,	
$\lambda + \frac{1}{2}\mu - 1 = 0 \cdots (1)$	
$\frac{2}{2}\mu - \frac{2}{3}\lambda = 0 (2)$	
Solving, $\lambda = \mu = \frac{\lambda}{4}$	
Thus position vector of F is given by	
$= b + \frac{3}{4} \left(\frac{1}{3} (a+b) + \frac{2}{3} a - b \right)$	
$=\frac{3}{4}a+\frac{1}{2}b$	

$= \pi a^2 r^3 + \frac{\left(1 - a^3\right)}{3} \pi r^2 \sqrt{16 - r^2}$	$=\pi a^2 r^3 + \left(1 - a^3\right) \left(\frac{1}{3}\pi r^2 h\right)$	$=\pi a^2 r^3 + \left(V_h - a^3 V_h\right)$	$V = \pi \left(ar \right)^2 r + \left(V_h - V_h \right)$	Also, it is given that $h = \sqrt{4^2 - r^2}$. Hence	$\frac{V_h}{V_h} = \left(\frac{ar}{r}\right) = a^3.$	cone that was removed. Since both cones are similar, However, most students du not	Let V_h and v_h be the volumes of the original cone and with part was very well defined by
					form.	leave their answers in simplied	THIS part was very went done.

$h = \sqrt{16 - 3.462322463^2} = 2.00 \text{ (to 3 s.f.)}$	(b) Using G.C., since $r > 0$, r = 3.462322463 or $r = 3.02637266When r = 3.462322463, \frac{dV}{dr} = 0.When r = 3.02637266, \frac{dV}{dr} = 10.790112 \neq 0$	$\frac{49}{16} \left(\frac{9r - 192r + 1024}{16 - r^2} \right) = r^2$ $49 \left(9r^4 - 192r^2 + 1024 \right) = 256r^2 - 16r^4$ $457r^4 - 9664r^2 + 50176 = 0$	$r + \frac{7}{4} \left(\frac{32 - 3r^2}{\sqrt{16 - r^2}} \right) = 0$ $\frac{7}{4} \left(\frac{3r^2 - 32}{\sqrt{16 - r^2}} \right) = r$	$0.1875\pi r^2 + 0.328125\pi r \left(\frac{32 - 3r^2}{\sqrt{16 - r^2}} \right) = 0$ Since $0 < r < 4$,	For stationary V , $\frac{dV}{dr} = 0$	$= 0.1875\pi r^2 + 0.328125\pi r \left(\frac{32 - 3r^2}{\sqrt{16 - r^2}} \right)$	$\frac{dV}{dr} = 0.1875\pi r^2 + 0.328125\pi \left[2r\sqrt{16-r^2} + \frac{r^2(-2r)}{2\sqrt{16-r^2}} \right]$ $= 0.1875\pi r^2 + 0.328125\pi \left[\frac{2r(16-r^2)-r^3}{\sqrt{16-r^2}} \right]$	(a) Given that $a = 0.25$, $V = 0.0625\pi r^3 + 0.328125\pi r^2 \sqrt{16 - r^2}$
	Many did not attempt this part or tried to and obtained the correct value of r but did not check the corresponding value of the derivative.						L	Most students could apply the Product rule but experienced great difficulty in simplifying the expression to show the required

Forms)
Geometric
Numbers -
(Complex
Question 6

-e 18	$\frac{e^{\frac{2}{2}}}{-2\sin\frac{\theta}{2}}i$ $\cos\theta \text{ and sin}\theta$ $\cos\theta \text{ and sin}\theta$ $\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}$ $\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}$ $\frac{\cos\theta}{2}+i\sin\frac{\theta}{2}$ $\frac{\cos\theta}{2}+i\sin\frac{\theta}{2}$ $\frac{\cos\theta}{2}+i\sin\frac{\theta}{2}$ $\frac{\cos\theta}{2}+i\sin\frac{\theta}{2}$ $\frac{\sin\theta}{2}+i\sin\theta$ $\frac{\sin\theta}{2$	Most students could give at least two different representations. $\begin{pmatrix} \frac{3\pi}{2} \end{pmatrix} \text{ or } e^{\left(\frac{3\pi}{2}\right)}$ $e^{\left(\frac{3\pi}{2}\right)} is the representation that are missed the most by the different are missed the most by the graph of the different are missed the different are $
$\frac{e^{i\theta}}{1 - e^{i\theta}} = \frac{e^{i\theta}}{e^{i\theta}}$	$=\frac{e^{\frac{i^2}{2}}}{\left(-2\sin\frac{\theta}{2}\right)i}$ $=\frac{\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}}{\left(-2\sin\frac{\theta}{2}\right)i}$ $=\frac{1}{2i}\cot\frac{\theta}{2}-\frac{1}{2}$ $=\frac{1}{2}\cot\frac{\theta}{2}-1$ $=\frac{1}{2}\left(\cot\frac{\theta}{2}-1\right)$	ii) $i = e^{\frac{i\pi}{2}}$ or $e^{\left(\frac{3\pi}{2}\right)}$

Most candidates did not write any useful working for this part.	Learning points: - Exponential forms of complex number follows the exponential rules e.g.,	$z^3 = e^{i\alpha}$ implies $z = e^{i\frac{\alpha}{3}}$.	Only a small number of candidates could make the connection with the earlier nart	and manipulated to obtain $w = \frac{e^{i\theta}}{1 - e^{i\theta}} = \frac{1}{2} \left[\cot \frac{\theta}{2} - 1 \right]$		
(III) $\left(\frac{W}{W+1}\right)^3 = i = e^{\frac{i\pi}{2}}$ or $e^{\left(\frac{2\pi}{2}\right)}$ or $e^{\left(\frac{2\pi}{2}\right)}$ by (II)	$\Rightarrow \frac{w+1}{w+1} = e^{u} \text{ or } e^{(x)}$ Now let $\frac{w}{u} = e^{i\theta}$, where $\theta = -\frac{\pi}{\alpha}, \frac{\pi}{\alpha}, \frac{5\pi}{\alpha}$.	W+1 2 0 0 Then we have	$w = e^{i\theta} w + e^{i\theta}$ $\Rightarrow w(1 - e^{i\theta}) = e^{i\theta}$	$\Rightarrow w = \frac{e^{i\theta}}{1 - e^{i\theta}} = \frac{1}{2} \left(i \cot \frac{\theta}{2} - 1 \right) \text{ by (i)}$	Therefore $w = \frac{1}{2} \left[\cot \left(-\frac{\pi}{4} \right) - 1 \right], \frac{1}{2} \left[\cot \left(\frac{\pi}{12} \right) - 1 \right] \text{ or } \frac{1}{2} \left[\cot \left(\frac{5\pi}{12} \right) - 1 \right].$	

Question 7 (Power Series)

$y = \csc\left(2x + \frac{\pi}{4}\right)$ $\Rightarrow \frac{dy}{dx} = -2\csc\left(2x + \frac{\pi}{4}\right)\cot\left(2x + \frac{\pi}{4}\right)$ $\Rightarrow \frac{dy}{dx} = -2\csc\left(2x + \frac{\pi}{4}\right)\cot\left(2x + \frac{\pi}{4}\right)$ $\Rightarrow \frac{dy}{dx^2} = -2\csc\left(2x + \frac{\pi}{4}\right)\left(-2\csc^2\left(2x + \frac{\pi}{4}\right)\right)$ $\Rightarrow \frac{d^3y}{dx^2} = -2\cos^2\left(2x + \frac{\pi}{4}\right)\left(-2\csc^2\left(2x + \frac{\pi}{4}\right)\right)$ $= 2\cot\left(2x + \frac{\pi}{4}\right)\left(-2\csc^2\left(2x + \frac{\pi}{4}\right)\right)$ $= 4y^3 + 4y(y^2 - 1)$ $= 8y^3 - 4y \text{ (shown)}$ $\Rightarrow \frac{dy}{dx} = -2\cos^2\left(2x + \frac{\pi}{4}\right)$ $\Rightarrow \frac{dy}{dx} = -2y\cot\left(2x + \frac{\pi}{4}\right)$ $\Rightarrow \frac{dy}{dx^2} = 4y\cot^2\left(2x + \frac{\pi}{4}\right) - 2y\left(-2\csc^2\left(2x + \frac{\pi}{4}\right)\right)$ $\Rightarrow \frac{d^2y}{dx^2} = 4y\cot^2\left(2x + \frac{\pi}{4}\right) + 4y^3$ $\Rightarrow \frac{d^2y}{dx^2} = 4y\cot^2\left(2x + \frac{\pi}{4}\right) - 1 + 4y^3$ Learning points: Please

Wethod 3
$$y = \operatorname{cosec}\left(2x + \frac{\pi}{4}\right)$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -2\operatorname{cosec}\left(2x + \frac{\pi}{4}\right) \cot\left(2x + \frac{\pi}{4}\right)$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -2y\sqrt{y^2 - 1}$$

$$\Rightarrow \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 4y^2\left(y^2 - 1\right) = 4y^4 - 4y^2$$

$$\Rightarrow 2\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}^2y}{\mathrm{d}x} = \left(16y^3 - 8y\right)\frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x} = 8y^3 - 4y \quad (\operatorname{shown})$$

Method 4
$$\frac{1}{y} = \sin\left(2x + \frac{\pi}{4}\right)$$

$$\frac{1}{y^3}\frac{\mathrm{d}y}{\mathrm{d}x} = 2\cos\left(2x + \frac{\pi}{4}\right)$$

$$\frac{\mathrm{d}y}{y^3}\frac{\mathrm{d}x} = 2\cos\left(2x + \frac{\pi}{4}\right)$$

$$\frac{\mathrm{d}y}{y^3}\frac{\mathrm{d}x} = 2\cos\left(2x + \frac{\pi}{4}\right)$$

$$= 8y^3\cos^2\left(2x + \frac{\pi}{4}\right) + 4y^2\sin\left(2x + \frac{\pi}{4}\right)$$

$$= 8y^3\cos^2\left(2x + \frac{\pi}{4}\right) + 4y^2\sin\left(2x + \frac{\pi}{4}\right)$$

$$= 8y^3\left(1 - \sin^2\left(2x + \frac{\pi}{4}\right)\right) + 4y^2\sin\left(2x + \frac{\pi}{4}\right)$$

$$= 8y^3 - 4y(\mathrm{shown})$$

$$= 8y^3 - 4y(\mathrm{shown})$$

(ii) $\frac{d^2y}{\sqrt{3}} = 8y^3 - 4y \Rightarrow \frac{d^3y}{\sqrt{3}} = 24y^2 \frac{dy}{\sqrt{3}} - 4\frac{dy}{\sqrt{3}}$	Common errors:
क्रि. क्रि. क्रि.	- obtained $\frac{d^3y}{dx^3} = 24y^2 - 4$ or
When $x = 0$,	differentiated $8y^3$ w.r.t x wrongly.
$y = \csc\left(\frac{\pi}{4}\right) = \sqrt{2}$	- did not simplify coefficient to
$\frac{dy}{dt} = -2\cos(\frac{\pi}{a})\cot(\frac{\pi}{a}) = -2\sqrt{2}$	a few wrote the Maclaurin series as
$\frac{d^2y}{(d^2y)^3 - 4\sqrt{2}} = 8(\sqrt{2})^3 - 4\sqrt{2} = 12\sqrt{2}$	a sum of powers of $\left(x + \frac{\pi}{4}\right)$
$\frac{dx^3}{dx} = 24(2)(-2\sqrt{2}) - 4(-2\sqrt{2}) = -88\sqrt{2}$	- Maclaurin's Theorem can be referenced from MF26 formula.
	Show working to find the values of
Hence (#)	y, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$ when $x=0$ first,
$\left \cos \left(2x + \frac{\pi}{4}\right) \approx \sqrt{2 + \left(-2\sqrt{2}\right) \frac{\pi}{1!} + \left(12\sqrt{2}\right) \frac{\pi}{2!} + \left(-88\sqrt{2}\right) \frac{\pi}{3!}}\right $	before substituting the values into
$= \sqrt{2} - 2\sqrt{2}x + 6\sqrt{2}x^2 - \frac{44}{2}\sqrt{2}x^3$	the Maciaurin series coefficients. Doing these simultaneously
	usually results in arithmetic errors. Poorly attempted. Many students left
14 15.2	this part blank or just substituted $x = \frac{1}{x}$
$-2\cos^2(2x+\frac{1}{4})\cos(2x+\frac{1}{4})\approx -24x+124x=4444x$	$\pi/200$ or $x = \pi/100$ into their answer in
	part (ii) and consequently were stuck
$\cos \operatorname{ec} \left(2x + \frac{\pi}{4} \right) \cot \left(2x + \frac{\pi}{4} \right) \approx \sqrt{2} - 6\sqrt{2}x + 22\sqrt{2}x^{2}.$	with $\cot(x+\pi/4)$.
	Learning points:
Let $2x + \frac{n}{4} = \frac{10n}{50}$. Then $x = \frac{n}{200}$.	Hence' implies there is a need to
Hence	parts. Observe that
$\cos \operatorname{ec}\left(\frac{13\pi}{50}\right) \cot\left(\frac{13\pi}{50}\right) \approx \sqrt{2} \left(1 - 6\left(\frac{\pi}{200}\right) + 22\left(\frac{\pi}{200}\right)^{2}\right)$	$\csc\left(2x + \frac{\pi}{4}\right)\cot\left(2x + \frac{\pi}{4}\right)$
$\approx \sqrt{2} \left(1 - \frac{3}{3}\pi + \frac{11}{\pi^2}\pi^2\right)$	# (-1) dy
(100 20000)	Differentiate the answer in part (ii)
	w.r.t x first before substituting $x \approx$
	$\pi/200$. Students who attempted to
	do these together in one step
	usually made anthmetic errors.

Question 8 (Sequences and Series)

$=An^{2} + Bn + 2^{n+1} - (A(n-1)^{2} + B(n-1) + 2^{n})$ $=An^{2} + Bn + 2^{n+1} - (An^{2} - 2An + A + Bn - B + 2^{n})$ $= 2(2^{n}) + 2An - A + B - 2^{n} = 2^{n} + (2n - 1)A + B$ $= 2^{3} + (2(3) - 1)A + B = 21 \Rightarrow 5A + B = 13 \cdots (1)$ $= 2^{5} + (2(5) - 1)A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $\text{ving (1) and (2). } A = 2 \text{ and } B = 3. \text{ Hence}$ $= \left\{ 2(1)^{2} + 3(1) + 2^{1+1}, n \ge 2 \\ 2^{n} + 4n + 1, n \ge 2 \\ 2^{n} + 4n + 1, n \ge 2 \\ 2^{n} + 4n + 1, n \ge 2 \\ 2^{n} + 4n + 1, n \ge 2 \\ 3^{n} + 4n + 1, n \ge 2 \\ 3^{n} + 4n + 1, n \ge 2 \\ 4^{n} + 4n + 1, n \ge 2 $ $4^{n} + 4n + 1, n \ge 2 \\ 4^{n} + 4n + 1, n \ge 2 $ $4^{n} + 4n + 1, n \ge 2 $ $4^{n} + 4n + 1, n \ge 2 $ $4^{n} + 4n + 1, n$	(a) For n≥2,	Common errors:
$A + B - 2^{n} = 2^{n} + (2n - 1)A + B$ $A + B - 2^{n} = 2^{n} + (2n - 1)A + B$ $A + B = 21 \Rightarrow 5A + B = 13 \cdots (1)$ $A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A + B = 53 \Rightarrow 9A + B = 1 \cdots (2)$ $A + B = 11 \Rightarrow 10$ $A + B \Rightarrow 10$ A	$u_s = An^2 + Bn + 2^{n+1} - (A(n-1)^2 + B(n-1) + 2^n)$	- take $S_3 = 21$ and $S_5 = 53$
$A + B - 2^{n} = 2^{n} + (2n - 1)A + B$ $A + B - 21 \Rightarrow 5A + B = 13 \cdots (1)$ $A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A = 2 \text{ and } B = 3 \text{ Hence}$ $A = 2 \text{ and } B = 3 \text{ Hence}$ $A = 2 \text{ and } B = 3 \text{ Hence}$ $A = 2 \text{ and } B = 3 \text{ Hence}$ $A = 2 \text{ and } B = 3 \text{ Hence}$ $A = 2 \text{ and } B = 3 \text{ Hence}$ $A = 2 \text{ and } B = 3 \text{ Hence}$ $A = 3 \text{ and } B =$	$= An^2 + Bn + 2^{n+1} - (An^2 - 2An + A + Bn - B + 2^n)$	- did not simplify
$4 + B = 21 \Rightarrow 5A + B = 13 \cdots (1)$ $4 + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A = 2 \text{ and } B = 3. \text{ Hence}$ $2^{1+i}, n \ge 1 = \begin{cases} 9, & n = 1 \\ 9, & n = 1 \end{cases}$ $\begin{cases} n \ge 1, & n \ge 2 \\ 2^{n+i}, & n \ge 2 \end{cases}$ $\begin{cases} n \ge 1, & n \ge 2 \\ 2^{n+i}, & n \ge 3 \end{cases}$ $\begin{cases} n \ge 1, & n \ge 2 \\ 2^{n+i}, & n \ge 3 \end{cases}$ $\begin{cases} n \ge 1, & n \ge 3 \\ 2^{n+i}, & n \ge 3 \end{cases}$ $\begin{cases} n \ge 1, & n \ge 3 \\ 2^{n+i}, & n \ge 3 \end{cases}$ $\begin{cases} n \ge 1, & n \ge 3 \\ 2^{n+i}, & n \ge 3 \end{cases}$ $\begin{cases} n \ge 1, & n \ge 3 \\ 2^{n+i}, & n \ge 3 \end{cases}$ $\begin{cases} n \ge 1, & n \ge 3, & n \ge 3 \\ 2^{n+i}, & n \ge 3 \end{cases}$ $\begin{cases} n \ge 1, & n \ge 3, & n \ge 3, \\ n \ge 3, & n \ge 3, \\ n \ge 1, \\ n \ge 1, & n \ge 3, \\ n \ge 1, $	$= 2(2^n) + 2An - A + B - 2^n = 2^n + (2n - 1)A + B$	Z = Z - Z - Z = Z Exist to small, A D/CD formula
$\begin{array}{l} 1 + B = 21 \implies 3A + B = 13 \cdots (1) \\ 1 + B = 53 \implies 9A + B = 21 \cdots (2) \\ 1 + A = 2 \text{ and } B = 3 \text{ Hence} \\ 2^{1+4}, n = 1 \\ 1 + n \ge 2 \\ 2^{2} + 4n + 1, n \ge 2 \\ 2^{2} +$	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	wrote $u_n = S_{n+1} - S_n$
$1+B = 53 \Rightarrow 9A + B = 21 \cdots (2)$ $A = 2 \text{ and } B = 3. \text{ Hence}$ $2^{1+1}, n = 1$ $3^{1}, n \geq 2 = \left\{ 2^{n} + 4n + 1, n \geq 2, n = 1, \\ 0 = 1$	$u_3 = 2 + (2(3) - 1)A + B = 21 \implies 3A + B = 13 \cdots (1)$	- did not check for u_1 and S_1 . Only a handful of students got the correct answer
$A = 2 \text{ and } B = 3. \text{ Hence}$ $2^{1+i}, n = 1$ $1, n \ge 2 = \left\{ 2^r + 4n + 1, n \ge 2 \right\}$ $1, n \ge 2 = $	$u_1 = 2^5 + (2(5) - 1)A + B = 53 \Rightarrow 9A + B = 21 \cdots (2)$	for u_r .
$\sum_{j=1}^{2^{m}} \binom{r+2}{r+1} - \ln \binom{r+1}{r}$ $\sum_{j=1}^{n} \left(\ln \binom{r+2}{r+1} - \ln \binom{r+1}{r} \right)$ $\sum_{j=1}^{n} \binom{n}{r+1}$ $\sum_{j=1}^$		from
$\sum_{i=1}^{n} \left(\ln \left(\frac{r+2}{r+1} \right) - \ln \left(\frac{r+1}{r} \right) \right)$ $\sum_{i=1}^{n} \left(\frac{n}{r+1} \right)$ (shown)		$u_n = S_n - S_{n-1}, n \ge 2$ (*). Please check if the
$\sum_{i=1}^{n} \left(\ln \left(\frac{r+2}{r+1} \right) - \ln \left(\frac{r+1}{r} \right) \right)$ $= \frac{n}{n}$ $= $		formula (*) is consistent with (i.e. is equal to) S_z for $n=1$. If it is not, you need to write u .
$\sum_{n=1}^{n} \left(\ln \left(\frac{r+2}{r+1} \right) - \ln \left(\frac{r+1}{r} \right) \right)$ $\frac{n}{\sqrt{n}}$ (shown)		as a piecewise function of n , and write $n - C$ sengrately. If it is the answer can be
$\sum_{n=1}^{n} \left(\ln \left(\frac{r+2}{r+1} \right) - \ln \left(\frac{r+1}{r} \right) \right)$ $\sum_{n=1}^{n} \left(\ln \left(\frac{r+2}{r+1} \right) - \ln \left(\frac{r+1}{r} \right) \right)$ (Shown)		written as a single function
$\sum_{n=1}^{n} \left(\ln \left(\frac{r+2}{r+1} \right) - \ln \left(\frac{r+1}{r} \right) \right)$ $\frac{n}{\sqrt{n}}$ (Shown)		
$\sum_{n=1}^{n} \left(\ln \left(\frac{r+1}{r+1} \right) - \ln \left(\frac{r+1}{r} \right) \right)$ $\lim_{n \to \infty} \frac{1}{n} $ (shown)	(b)(i) $\frac{n}{2} \left(\frac{r}{r(r+2)} \right) \frac{n}{2} \left(\frac{r+2}{r+2} \right) \frac{n}{r+1} $	Common errors: - could not apply laws of logarithm to
$(\sqrt{\frac{n}{n}})$ $(\sqrt{\frac{n+1}{n}})$ (shown)	$\left \sum_{i=1}^{n} \ln \left(\frac{1}{(r+1)^2} \right) \right = \sum_{i=1}^{n} \ln \left(\frac{1}{r+1} \right) - \ln \left(\frac{1}{r+1} \right) \right $	into -2)
$(\frac{n}{\sqrt{1+1}})$ $(\frac{n}{\sqrt{n}})$ (shown)	$= \left(\ln\left(\frac{3}{2}\right) - \ln 2\right)$	`
$(\frac{n}{\sqrt{1+1}})$ $(\frac{n}{\sqrt{n}})$ $(\frac{n+1}{\sqrt{n}})$ $(\frac{n+1}{\sqrt{n}})$ $(\frac{n+1}{\sqrt{n}})$ $(\frac{n+1}{\sqrt{n}})$	+ \left[\delta	$\ln\left(\frac{r}{r+1}\right) - \ln\left(\frac{r+1}{r+2}\right)$ that would allow
$(\sqrt{\frac{n}{n+1}})$ (shown)	((z) /s))	for the method of differences to be
- ((+1) ((whown))	$+\left(\ln\left(\frac{a+1}{n}\right)_{-\ln\left(\frac{n}{n}\right)}\right)$	applied. $\frac{1}{r} \ln \frac{r^2 + 2r}{r + 1} \ln \frac{r}{r} \ln r$ or
shown)		attempted to use partial fractions, with
(shown)	$+\left(\ln\left(\frac{n+2}{n+1}\right)-\ln\left(\frac{n+1}{n}\right)\right)$	 ittle success. did not put brackets properly, please note
(shown)	$=-\ln 2 + \ln \left(\frac{n+2}{n+1}\right)$	that $\sum_{r=1}^{n} \left\{ \ln \left(\frac{r+2}{r+1} \right) - \ln \left(\frac{r+1}{r} \right) \right\}$
	$= \ln\left(\frac{n+2}{n+1}\right) - \ln 2 \text{ (shown)}$	$\neq \sum_{r=1}^{n} \ln \left(\frac{r+2}{r+1} \right) - \ln \left(\frac{r+1}{r} \right)$
	(111)	- not cancelling the terms properly (or not cancelling any single term). Not showing at least one full cancellation above and at
least one tull cancellation below.		least one full cancellation below.

with $q-1$, change the general term to that in part (b)(i) and then replace the lower and upper limit with $q-1=0$ and $q-1=n$.	$= \ln\left(\frac{n+3}{n+2}\right) - \ln 2$
Learning points: As the general term is different from the series in part (b)(i), the correct technique is to use the substitution method.	$= \ln\left(\frac{n+1+2}{n+1+1}\right) - \ln 2$
Many started with the series in part (b)(i) and could not proceed or could not get the correct answer.	$=\sum_{q=1}^{q-1-n}\ln\left(\frac{q(q+2)}{(q+1)^2}\right)$ $=\sum_{q=1}^{q+1}\ln\left(\frac{q(q+2)}{(q+2)^2}\right)$
Common errors: - Many could not perform the appropriate substitution to manipulate the current series to "appear" like the previous	(b)(ii) $\sum_{r=0}^{n} \ln \left(\frac{r^2 + 4r + 3}{(r+2)^2} \right) = \sum_{r=0}^{n} \ln \left(\frac{(r+1)(r+3)}{(r+2)^2} \right)$
	$+(\ln(n-1) - 2\ln(n) + \ln(n+1) +(\ln(n) - 2\ln(n+1) + \ln(n+2) +(\ln(n) - 2\ln(n+1) + \ln(n+2) = \ln(1 - \ln 2 - \ln(n+1) + \ln(n+2) = \ln(n+2) - \ln(n+1) - \ln 2 = \ln\left(\frac{n+2}{n+1}\right) - \ln 2 \text{ (shown)}$
full cancellation above and one full cancellation below are shown. For "Show" type of MOD question, you need to write out the terms after cancellation before the final shown answer.	$= (\ln 1 - 2\ln(2) + \ln(3))$ $+ (\ln 2 - 2\ln(3) + \ln(4))$ $+ (\ln 3 - 2\ln(4) + \ln(5))$ $+ (\ln(n-2) - 2\ln(n-1) + \ln(n)$
Learning points: - For the alternative solution, you need to write 1st 3 rows and last 3 rows so that one	Alternative Solution $\sum_{r=0}^{n} \ln \left(\frac{r(r+2)}{r-2} \right) = \sum_{r=0}^{n} \left(\ln r - 2 \ln(r+1) + \ln(r+2) \right)$

roots.

 \therefore The equation $\frac{dy}{dx} = 0$ has two real and distinct

Discriminant, $D = (c-2)^2 - 4(1)(-c)$

 $=c^2-4c+4+4c$

 $=c^2+4\geq 4>0$ for all $c\in\mathbb{R}$.

incorrect because the expression above is NOT a quadratic expression in x, so it is meaningless to talk about the discriminant of

 $(x^2+(c-2)x-c)e^{-x}$.

This is

has two stationary points for all real values of c.

writing $c^2 > 0$ for all real values of c.

The correct inequality is $c^2 \ge 0$ for all

real values of c.

the question.

*writing the discriminant as " $b^2 - 4ac$ " when c is already used in

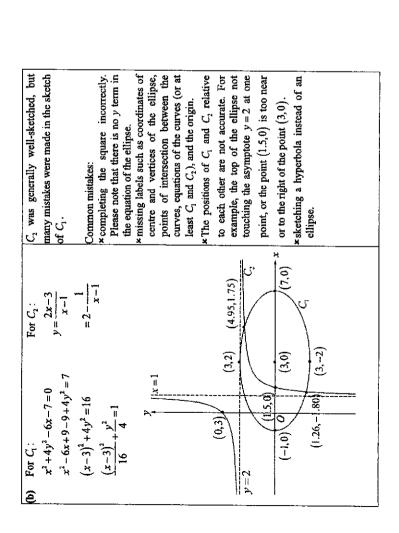
 $(x^2+(c-2)x-c)e^{-x}.$

*assuming that "discriminant > 0" straightaway. This is incorrect because you are assuming precisely what you need to prove.

xtying to show that "discriminant ≥ 0" instead of "discriminant > 0". Recall your O-

*It is appalling that a notable number

Level content on discriminants.

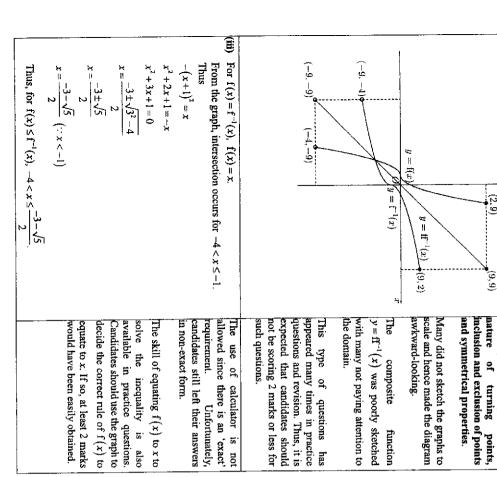

of students expanded $(c-2)^2$ as

 c^2-2c+4 .

Therefore, the curve with equation $y = (x^2 + cx)e^{-x}$

Question 9 (Curve Sketching)

$x^2 + (c-2)x - c = 0 \ (\because e^{-x} > 0 \text{ for all } x \in \mathbb{R})$ real.	At stationary points, $\frac{dx}{dx} = 0$. $-(x^2 + (c-2)x - c)e^{-x} = 0$		e-*
real. *computing the discriminant of	dividing throughout by e ^{-z} . *Solving for the roots and stopping short of explaining why both roots are	Common mistakes: *not stating "e ^{-x} > 0 (or e ^{-x} \neq 0) for all $x \in \mathbb{R}$ "in the proof at the step of	Please note that in questions that require a proof, it is important to demonstrate your reasoning and justify steps where necessary.


Question 10 (Functions)

L			
	€	(f) For $-4 < x < -1$, $f(x) = -(x+1)^2$	Many assumed that $\sqrt{-y}$ should be rejected,
		$Let \ \nu = -(x+1)^2$	not realising that y can be negative. Hence
		: (-, -,)	many omitted the rule $-1-\sqrt{-x}$.
		$(x+1)^- \approx -y$	
		$x+1=\pm\sqrt{-y}$	Unfortunately, there are still a lot of students
		$x = -1 \pm \sqrt{-\nu}$	who did not consider $\pm \sqrt{\frac{1}{2}}$ and did not use
		Since $-4 < x < -1$, $x = -1 - \sqrt{-y}$	correct square root. The skill of choosing
		T	the correct square root has been tested so
		For $-1 \le x \le 2$, $1(x) = (x+1)$	many times in many topics and thus it is
		Let $y = (x+1)^2$.	expected that candidates should have a good
		$(x+1)^2 = y$	grasp of this skill by now.
		$x+1 = \pm \sqrt{y}$	Another group of students recalled the
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	relevance of \pm but were unsure where it
		(\ T T T T T T T T T T	should be placed and nence modulus signs
		Since $-1 \le x \le 2$, $x = -1 + \sqrt{y}$	were used everywhere without proper
			consideration. Examples include $-1 \pm \sqrt{ x }$,
		Thus,	$\sqrt{ x \pm 1}$, $1+ \sqrt{x} $ etc.
		$f = f(x) = \int -1 - \sqrt{-x}$, for $x \in \mathbb{R}$, $-9 < x < 0$,	
		$1 (x) = \begin{cases} -1 + \sqrt{x}, & \text{for } x \in \mathbb{R}, 0 \le x \le 9. \end{cases}$	Domains of the inverse were NOT properly
			thought through, with many thinking that the
			value -1 was relevant since the rule was
i			1±√

 $\overline{\Xi}$

(2.9)

(9,9)

For such questions, details are necessary, including domains,

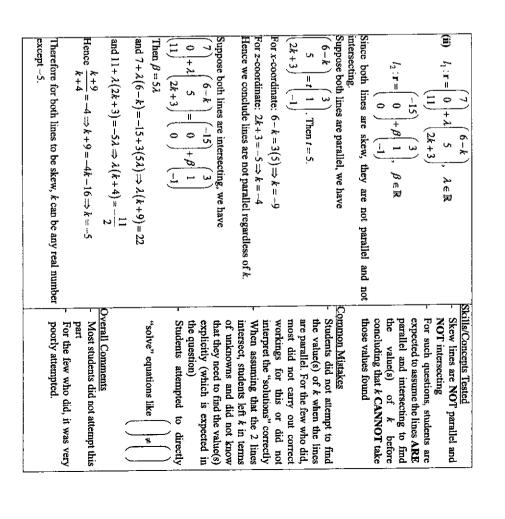
Question 11 (Differential Equations)

$\Rightarrow \sqrt{1+p^2} + p = Ae^{ax}, A = e^c$	$\Rightarrow \sqrt{1+p^2}+p=e^{m+c}$	$\Rightarrow \ln\left(\sqrt{1+p^2}+p\right) = ax+c$ (Note: $p = \tan u \Rightarrow \sec^2 u =$	$\Rightarrow \int \sec u du = \int a dx$ $\Rightarrow \ln \left(\sec u + \tan u \right) = \int a dx$	$\Rightarrow \sec u \frac{du}{dx} = a$	$\Rightarrow \left(\sec^2 u\right) \frac{du}{dx} = a\sqrt{1 + \tan^2 u}$ $\Rightarrow \left(\sec^2 u\right) \frac{du}{dx} = a \sec u$ Since the	(ii) $p = \tan u \Rightarrow \frac{dp}{dx} = \frac{dp}{dx} = a\sqrt{1 + p^2}$	(1) Since $p = \frac{1}{k} \frac{dy}{dx}$, $\frac{dy}{dx} = kp$. $\frac{d^2y}{dx^2} = ak \sqrt{1 + \left(\frac{1}{k} \frac{dy}{dx}\right)^2}$ $\Rightarrow k \frac{dp}{dx} = ak \sqrt{1 + p^2}$ (shown)	1 4
Ae^{ac} , $A=e^{c}$	⁶ æ∗c	$\Rightarrow \ln\left(\sqrt{1+p^2}+p\right) = ax+c$ (Note: $p = \tan u \Rightarrow \sec^2 u = 1+p^2$)	$\Rightarrow \int \sec u du = \int a dx$ Integral formula for the secant function is in MF26. $\Rightarrow \ln \left(\sec u + \tan u \right) = ax + c : u < \frac{\pi}{2}$		$\sqrt{1 + \tan^2 u}$ Remember that $\sec^2 u = 1 + \tan^2 u.$ Since the DE is of the form	$p = \tan u \Rightarrow \frac{dp}{dx} = \frac{dp}{du} \times \frac{du}{dx} = (\sec^2 u) \frac{du}{dx}. \text{ Thus,}$ $\frac{dp}{dx} = a\sqrt{1 + p^2}$	Since $p = \frac{1}{k} \frac{yy}{dx}$, $\frac{yy}{dx} = kp$. $\therefore \frac{u}{dx^2} = k \frac{dy}{dx}$ $\frac{d^2y}{dx^2} = ak \sqrt{1 + \left(\frac{1}{k} \frac{dy}{dx}\right)^2}$ $\Rightarrow k \frac{dp}{dx} = ak \sqrt{1 + p^2}$ (shown)	. d ² d _n
$\Rightarrow \sec u + \tan u = \pm e^{au_{c}} = \pm e^{c}e^{ac}$ $\Rightarrow \sec u + \tan u = Ae^{ac}, A = \pm e^{c}$	$\Rightarrow \ln \sec u + \tan u = \alpha x + c$ $\Rightarrow \sec u + \tan u = e^{\alpha x + c}$	equals to $\ln (\sec u + \tan u) + c$ axa no modulus is required. Working with modulus should be as follows: $\int \sec u du = \int a dx$	simplified $\int \frac{1}{\sqrt{1+p^2}} dp$ incorrectly to $\int \frac{1}{\sqrt{1+\tan^2 u}} \times \frac{1}{\sec^2 u} du$. From MF26, if $ u < \frac{\pi}{2\pi}$ [see u du is		Some students could not apply the technique needed to solve this DE (method of separation). Workings such as $p = \int \sqrt{1 + p^2} dx$ and $u = \int \sec u dx$ were fairly common.	Many students were not familiar with the procedure to solve a differential equation via a given substitution. For some, their reductions even led to an equation that was void of any derivative. Please revise.	what to do here. A number of students skipped critical steps.	Some students were confused shout

still had a ± later. This is incorrect.

3	Since the turning point lies on the y-axis, when $x = 0$,	Some students could not convert
	$p = \frac{1}{k} \frac{dy}{dx} = 0$. Hence, $\sqrt{1+0^2} + 0 = Ae^0 \Rightarrow A = 1$. So,	sec <i>u</i> to $\sqrt{1+p^2}$. Please use higonometric identities or the right-angle method:
	$\sqrt{1+p^2}+p=e^{at} \Rightarrow \sqrt{1+p^2}=e^{at}-p$	$\sqrt{1+p^2}$
	$\Rightarrow 1 + p^2 = (e^{\alpha x} - p)^2 = e^{2\alpha x} - 2pe^{\alpha x} + p^2$	laren I
	$\Rightarrow 2pe^{ac} = e^{2ac} - 1$	$\sec u = \frac{ayp}{adj} = \sqrt{1 + p^2}$
	$\Rightarrow p = \frac{e^{2ax} - 1}{2e^{ax}} = \frac{e^{ax} - e^{-ax}}{2}$ (shown)	To simplify an equation comprising a surd, isolate the surd term on its own on one side of the equation first, before somaring both sides.
€	1 dy $e^{-0.0329x} - e^{0.0329x}$	Common errors:
<u> </u>	$\frac{0.701 dx}{1} = \frac{2}{10.00339x}$	P Considering $\frac{d^2y}{dx^2}$ (which is
	$y = 0.701$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	pointless for this question part;
	$= 0.701 \begin{pmatrix} e^{-0.0329x} & e^{0.0329x} \\ 2 & 0.0329 & 0.0329 \end{pmatrix} + d$	V e ^{0.0329} x = e ^{0.0329} ×e ^x
		of the laws of indices, a
	`	Secondary Math concept) • e-4.0329x - e-0.0329x = 2e(something)x
	Since $y = 192$ when $x = 0$, $192 = d - 10 653 \left(e^{-0.0329(0)} + e^{0.0329(0)} \right)$	(thinking that the exponents can somehow be combined even
	$\Rightarrow d = 213 \text{ (to 3 s.f.)}$	though the powers are unequal)
	Thus, $y = 213 - 10.7 \left(e^{-0.0359x} + e^{0.0329x} \right)$ (to 3 s.f.)	e^{-1} e e^{-1} differentiating instead of
	OR	Inde the arbitra
	20 1- 0 0	constant (which is a lethal
	Since $y = 0$ when $x = 96$, $0.0329(36)$	mistake for a differential
	$V = d - 10.053 (e^{-10.053} + e^{-10.053})$	leaving the final solution with an
	$\Rightarrow u = 2.51 \text{ (W 3 S.L)}$ Thus $v = 251 - 10.7 \left(e^{-0.0329x} + e^{0.0329x}\right) \left(er.3 \text{ e.f.}\right)$	arbitrary constant (The curve has
	(17.6 Cm) (Cm 2 3.1.)	thus clearly this question
		requires a particular solution.) Since $y = 192$ when $x = 0$, d (or
		c) = 192." (being very flippant
		evaluating the arbitrary constant,
		thus failing to realise that $e^* = 1$ and not 0)
		not simplifying the final answer

Question 12 (Vectors II)


```
intersection

Did not know what to get out
from "solving the 2 equations
with 3 unknowns" hence the
                                                                                                                                                               frems of the third, or
finding the point on the line
and the direction of the line
(i.e. cross product of the
normal vectors of the two
                   Find the equation of the line of
                                                                                                                                                                                                                                                                                                                                                                                                                                          before proceeding to use GC to
find the equation of the line of
                                               intersection between two planes
                                                                                              - solving two equations with
                                                                                                                     three unknowns through
expressing two variables in
                                                                                                                                                                                                                                                                                                                                                                         Interpreted "independent of k" as
                                                                                                                                                                                                                                                                                                                                                                                                                     Did erroneous workings to find k
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Missing "r=" and/or "λ∈R"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        when writing an equation of a line
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Careless algebraic manipulation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    workings appeared aimless
                                                                                                                                                                                                                                                                                                      Write an equation of a line
                                                                    without the use of GC by
                                                                                                                   unknowns
Skills/Concepts Tested
                                                                                                                                                                                                                                                                                                                                                  ommon Mistakes

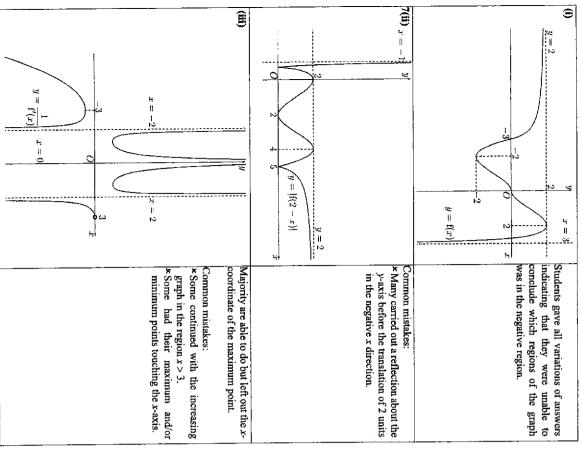
    Poorly attempted

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Overall Comments
                                                                                                                                                                                                                                                                                                                                                                                                  letting k = 0
                                                                                                                                                                                                                                                                                 planes).
                                                                                                                   three
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (2k+3)
                                =-15
                                                                                                                                                                                                                                                                                                                                                                         0
                                                                                                                                                                                                                                                                                                                                                                         Thus the position vector of such a point on l_1 is
                              **
                                                                                                                                                                                                                                                                                                                   Solving (1) and (2), we get x = 7 and z = 11.
                                  π<sub>2</sub> : Γ·
                                                                                                                                                                                                                                                       |x=-3 \Rightarrow x-2z=-15 \dots (2)
                                                                                                                                                           -3 = 5 \Rightarrow 2x + z = 25 \dots (1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Hence a vector equation of l<sub>i</sub> is
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Direction vector of l_1 = |-3| \times |
                         \pi_{\rm j}: \mathbf{r} \cdot |-3| = 25
                                                                                               Substituting (x, 0, z).
                                                                                                                                                                                                                        (x)(1)
                                                                                                                                                             0
```

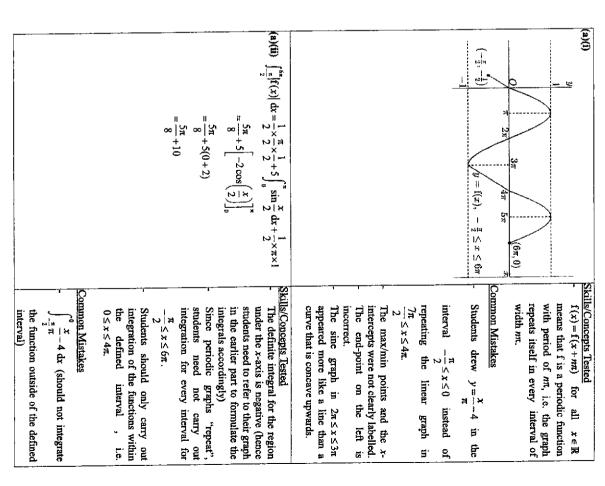
Thus, l_t has equation $\mathbf{r} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 11 \end{pmatrix} + t \begin{pmatrix} \left(\frac{6-k}{5}\right)t \\ t \\ 2 \end{pmatrix}, \ t \in \mathbb{R} \text{ or } t \in \mathbb{R} $ $\mathbf{r} = \begin{pmatrix} 7 \\ 0 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 6-k \\ 5 \\ 1 \end{pmatrix}, \ \lambda = \frac{t}{5} \in \mathbb{R}$	Substituting into equation (3), $z = 25 + 3t - 2\left[7 + \left(\frac{6 - k}{5}\right)t\right]$ $= 25 + 3t - 14 - \left(\frac{12 - 2k}{5}\right)t$ $= 11 + \left(\frac{3 + 2k}{5}\right)t$	Substituting equation (3) into (4), x + kt - 2(25 + 3t - 2x) = -15 x + kt - 50 - 6t + 4x = -15 5x + (k - 6)t = 35 $x = 7 + \left(\frac{6 - k}{5}\right)t$	Take $y = t$. Then (1): $2x - 3t + z = 25 \Rightarrow z = 25 + 3t - 2x$ (3) (2): $x + kt - 2z = -15$ (4)	$\pi_2: \mathbf{r} \cdot \begin{pmatrix} 1 \\ k \\ -2 \end{pmatrix} = -3 \Rightarrow x + by - 2z = -15 \dots (2)$	(i) Alternatively, $\pi_1 : \mathbf{r} \cdot \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = 5 \Rightarrow 2x - 3y + z = 25 \dots (1)$ and

(7) (2)	- Find distance between two skew
$\overrightarrow{OA} = 0 + \lambda $ 5 for some $\lambda \in \mathbb{R}$	lines by
(11) (11)	one line) and B (on the other
(-15) (3)	line) such that A and B are
$\overrightarrow{OB} \approx \begin{vmatrix} 0 + \beta \end{vmatrix} $ 1 for some $\beta \in \mathbb{R}$	nearest to each other (i.e. AB
(1-)	is perpendicular to both lines).
$\binom{2}{}$ \longrightarrow $\binom{3}{}$	Ine distance between A and B is the distance between the
Then we have $AB \cdot 5 = 0$ and $AB \cdot 1 = 0$	
	ine say C on one line and D
	on the other, and finding the
1.6. $\rho = 5\lambda$. $\beta = 0 \Rightarrow -130\lambda = 165 \Rightarrow \lambda = -100$	length of projection of CD
	on the direction vector that is
5 77	perpendicular to both lines
$\beta = 5\lambda$. 1 = 0 \Rightarrow 11 β = 55 \Rightarrow β = 5	with the use of an appropriate formula
(-22+3B-2)	Common Mistakes
Therefore $AB = \beta - 5\lambda = 10.5$.	- Use of wrong formula/vectors to
$(-11-\beta-11\lambda)$ (-3.9)	
	- Let $\overrightarrow{AB} = y$ and attempt to
Hence $ AB = \sqrt{(-4.8)^2 + (10.5)^2 + (-3.9)^2} = \sqrt{\frac{297}{10.00000000000000000000000000000000000$	
, , , , , , , , , , , , , , , , , , , ,	solve for the 3 unknowns with only 2 equations instead of
	Ĵ₽.
	equations of l_1 and l_2 which vields 2 unknowns
	STANTONION TO STANTONION
	Poorly attempted
	- A handful of students were not successful with this nart because
	they did not get the correct answer
	ui (i). It is commendable that there were
	students who could not get any
	answer in (i) made use of $k = 4$ and GC to find the equation of I_1
	to make some progress in this

3	(iv) Let the acute angle between l_1 and π_1 be θ .	Skills/Concepts Tested - Use an appropriate formula to
	3	find the acute angle between a line and a plane directly
	$\sin \theta = \frac{\left(-1\right)\left(1\right)}{2}$	Mistakes
	J11/14 J154	- Many students gave the acute angle instead of the sine of the
		acute angle hence losing 1 mark
		Overall Comments - More students could get at least 1
		mark for this part - Many students did not include the
		modulus function in the formula
		since the dot product in the
		numerator is positive.
ε	Let that shortest distance be d.	Skills/Concepts Tested
	297	earlier parts
	$\sin \theta = \sqrt{\frac{2}{2}} = \frac{2}{2}$	Common Mistakes
	d \154	- Students used the formula for
	→ a = 73.0 (t0 3 8.1.)	length of projection to find the shortest distance
		Orana II Commanda
		Most students did not attempt this
		part - For those who did, none did this
		part by using answers from the
		earlier parts and a simple trigo ratio. Instead they used an
		onerous method of finding \overrightarrow{OP}
		followed by a formula to find the
		shortest distance (which most of
		these students applied the wrong
		топта


Question 1 (Complex Numbers - Cartesian Forms)

$[x_1 + x_2 - y_1 - y_1]$	Most students were able to demonstrate
	the security delift and so commented
$wz^* = w ^2 + 6i - (2)$	cure required skins such as conjugation, enteringing and
-	
Multiply w throughout (1), we get	
$ww^* = w(z-2i)$	There is a significant number of students
	ined correct answers by
$\Rightarrow w = w(z-2i)$	through incorrect methods and/or
$\Rightarrow wz^* = w(z-2i) + 6i \pmod{(2)}$	inaccuracies. This is because in this narticular obsertion $w = -3$ which is a
$\Rightarrow w(z^*-z+2i)=6i$	real number, and real numbers satisfy
$a \rightarrow b = b + c$ and $a \rightarrow c \rightarrow c$	relations that are generally
, 5	
$\Rightarrow w = \frac{01}{(-2bi+2i)} = \frac{3}{-b+1}$	such as $ w ^2 = w^2$ and $w = w^*$.
Hence $u^{\sharp} = \frac{3}{n^2 - n^2 - n^2} = n + i h = 2i$	Common mistakes:
-b+1	* Carelessness in computations.
ten one open venning one base from the open one	Final stating $a, b \in \mathbb{R}$ when introducing
Comparing increasing magning pairs, we get	W OI 2 as 4 + 01.
7 = 0 · · · 0 = 7 - 0	r Ireating w as w, or
	$ a+bi ^2$ as $a^2 + 2abi - b^2$.
-b+1 = a : a = -2 = -3	$\times z-2i ^2 = z^2 - 4iz + (2i)^2$.
(m	$ x z-2i ^2=z^2+2^2$, or worse still,
Therefore, $z = -3 + 21$ and $w = \frac{-2}{-2 + 1} = -3$.	
Alternative (but not recommended).	* Taking conjugate of $z-2i$ as $z+2i$.
Let $w = a + bi$ and $z = c + di$ where $a, b, c, d \in \mathbb{R}$.	(It should be z^*+2i .)
From (1): $a - bi = c + (d - 2)i$	ਫ਼
$\Rightarrow a = c \text{ and } b = 2 - d$.	imaginary parts.
From (2): $a - bi = c + (d - 2)i$	* Writing "comparing constants" when comparing real parts. (Note that
$\Rightarrow a = c - (3)$ and $b = 2 - d - (4)$.	complex numbers such as 4+5i are
(C) == 5 + 2 ro - * ro	constants too.)
W2 - M T OI - (2)	Students who rewrote both z and w in
$(a+b_1)(c-d_1) = a^{\prime\prime} + b^{\prime\prime} + 6i$	were not always successful in solving
$(ac + bd) + (bc - ad)i = a^2 + b^2 + 6i$	for the 4 unknowns. Hence, this is not a
$\Rightarrow ac + bd = a^2 + b^2(5) \text{ and } bc - ad = 6(6).$ $(Many expectation of to colve (3) (4) (5) and (6)$	recommended approach, especially since the 4 equations for the 4 unknowns
(vicini) surps required to solve (2), (4), (2) and (0))	are not all lincar.


Question 2 (Arithmetic and Geometric Series)

€	$a + (4-1)d = br^{6-1} \implies a + 3d = br^{3} - (1)$	Most students could set up the
	$a + (9-1)d = br^{9-1} \implies a + 8d = br^8 - (2)$	first 2 equations but were unable to use them to show the required
	$a + (11-1)d = br^{14-1} - br^6 \Rightarrow a + 10d = br^{13} - br^6 \longrightarrow (3)$	expression. Students who could
	$(2) - (1) : d = \frac{b}{-(p^8 - p^5)}$	not show the expression were still able to find the correct value of ransing GC
	$(3) - (2): d = \frac{b}{a} (r^{13} - r^8 - r^6)$	Common mistakes;
	Thus we have	* Do not know which unknown to eliminate.
	$\frac{b}{5}(r^8 - r^5) = \frac{b}{2}(r^{13} - r^8 - r^5)$	*Aimlessly manipulating the
	Since $b \neq 0$ and $r \neq 0$	mind.
	$2r^3 - 2r^5 = 5r^{13} - 5r^8 - 5r^6$	
	$2r^3 - 2 = 5r^8 - 5r^3 - 5r$	-
	$5r^3 - 7r^3 - 5r + 2 = 0$	
	Using GC to solve, the only real roots are 1.1371 and	
	0.34347. Since the geometric series is convergent, $r = 0.3435(4 d.p.)$	
€	Required sum	Most students used $S_{-}-S_{-}$ with
	$b(0.3435)^{n+1-1}$	the correct substitution of 1st
	1-0.3435	term and common ratio. But
	$\approx 1.523b(0.3435)$ "	majority did not find 0.523.
	≤1.523b(0.3435)¹ '	
	≈ 0.52315b	* Sloppy conclusion. Some
	3, ,	simply wrote 0.52315 < $\frac{2}{5}$.
	< = b (snown)	í

Question 3 (Transformation of Graphs)

Question 4 (Applications of Integration)

$x^2 = \frac{e^2}{2}$ $x^2 = \frac{e^2 r}{4}$ Since $V_A = V_B$. $x^2 = \frac{e^2 r}{4}$ $\pi \int_0^1 \frac{e^{2r} r}{4} dy = \pi \left(\frac{e}{2}\right)^2 (1-h) - \pi \int_0^1 \frac{e^{2r} r}{4} dy$ $\pi \int_0^1 \frac{e^{2r} r}{4} dy = \frac{e^2 (1-h)}{4} dy$ $\pi \int_0^1 \frac{e^{2r} r}{4} dy = \frac{e^2 (1-h)}{4} dy$ $\pi \int_0^1 \frac{e^{2r} r}{4} dy = \frac{e^2 (1-h)}{4} dy$ $\pi \int_0^1 \frac{e^{2r} r}{4} dy = \frac{e^2 (1-h)}{4} dy$ $\pi \int_0^1 \frac{e^{2r} r}{4} dy = \frac{e^2 (1-h)}{4} dy$ $\pi \int_0^1 \frac{e^{2r} r}{4} dy = \frac{e^2 (1-h)}{4} dy$ $\pi \int_0^1 \frac{e^{2r} r}{4} dy = \frac{e^2 (1-h)}{4} dy$ $\pi \int_0^{1-h} \frac{e^{2r} r}{4} dy = \frac{e^2 (1-h)}{4} dy$ $\pi \int_0^{2r} \frac{e^{2r} r}{4} dx = \frac{e^2 (1-h)}{4}$ $\pi \int_0^{2r} \frac{e^{2r} r}{4} dx = \frac{e^2 (1-h)}{4}$ $\pi \int_0^{2r} \frac{e^2 r}{4} dx = \frac{e^2 (1-h)}{4}$ $\pi \int_0^{2r} \frac{e^2 r}{4} dx = \frac{e^2 r}{4} dx$ Common Mistakes $\pi \int_0^{2r} \frac{e^2 r}{4} dx = \frac{e^2 r}{4} dx$ $\pi \int_0^{2r} \frac{r}{4} r dy + \frac{r}{4} \frac{r}{4} r$ $\pi \int_0^{2r} \frac{r}{4} r dy + \frac{r}{4} \frac{r}{4} r$ $\pi \int_0^{2r} \frac{r}{4} r dy + \frac{r}{4} \frac{r}{4} r$ $\pi \int_0^{2r} \frac{r}{4} r dy + \frac{r}{4} \frac{r}{4} r$ $\pi \int_0^{2r} \frac{r}{4} r dy + \frac{r}{4} \frac{r}{4} r$ $\pi \int_0^{2r} \frac{r}{4} r dy + \frac{r}{4} \frac{r}{4} r$ $\pi \int_0^{2r} \frac{r}{4} r dy + \frac{r}{4} \frac{r}{4} r$ $\pi \int_0^{2r} \frac{r}{4} r dy + \frac{r}{4}$	(b) $y = \ln(2x)$	Skills/Concepts Tested We use the volume formula G
Over answer	ار اا ال	Charles we are volunte tornina (i.e.
Over apart manti	2	$\pi \int_{y_i} x^2 dy$) only when the region
COM Capari manti m	$r^2 = \frac{e^2y}{m}$	UNDER the curve (wrt the y-axis)
Com Over manti manti manti manti	4	is rotated about the y -axis.
Com Over manti manti manti	Since $V_A = V_B$,	- If the region is NOT UNDER the
Over (apart mant)	(2, 1) (2, 2)	curve, the formula cannot be used
Over answer	π $\frac{c}{-dy} = \pi \left \frac{c}{-dy} \right (1-h) - \pi \left \frac{c}{-dy} \right $	directly to obtain the desired
Com Over Generation	Jo 4 (2) J, 4	volume. In this case, we need to
Con Over manti manti manti manti	$\pi \left(\frac{e^{2y}}{\pi} dy = \frac{\pi e^{2}}{(1-h)} \right)$	subtract $\pi \int_{-1}^{2\pi} x^2 dy$ from the
$\frac{\text{Com}}{\frac{1}{2} + \frac{1}{2}} e^{-2} \text{ or } \frac{1}{2} + \frac{1}{2e^{2}}$ $\frac{\text{Over}}{General manijus ma$	Jo 4 7 4	volume of cvlinder.
Com $\frac{1}{1} + \frac{1}{2} e^{-2}$ or $\frac{1}{2} + \frac{1}{2e^{2}}$ Over General manimum manim	$\int_{0}^{1} e^{2y} dy = e^{2}(1-h)$	
$\frac{1}{2} + \frac{1}{2} e^{-2} \text{ or } \frac{1}{2} + \frac{1}{2e^{2}}$ $\frac{Over}{Gene}$ $\frac{Gene}{Gapar}$ $\frac{Gapar}{mani}$		Common Mistakes
$\frac{1}{2} + \frac{1}{2} e^{-2} \text{ or } \frac{1}{2} + \frac{1}{2e^{2}}$ $\frac{Over}{Gene}$ $\frac{Gene}{Gapar}$ $\frac{Gapar}{mani}$	$\begin{bmatrix} e^{2y} \end{bmatrix}_{=e^2(l-k)}$	- Wrong volume formulation used,
$\frac{1}{2} + \frac{1}{2} e^{-2} \text{ or } \frac{1}{2} + \frac{1}{2e^{2}}$ Over (aparameter) Over (aparameter)	$\begin{bmatrix} 2 \\ \end{bmatrix}_{i=0} = 0 \ (1-i)$	e.g. $\int_{-R}^{R} x^2 dy$, $\pi \int_{-R}^{R} x dy$.
$\frac{1}{2} + \frac{1}{2}e^{-2} \text{ or } \frac{1}{2} + \frac{1}{2e^{2}}$ Over (apair man)	p ² -1	Kr. Kr
$\frac{1}{2} + \frac{1}{2} e^{-2} \text{ or } \frac{1}{2} + \frac{1}{2e^{2}}$ Over General (apan man)	$\frac{c-\epsilon}{2} = e^2 - e^2 h$	$\pi \int_{\infty}^{2\pi} y^2 dy$, $\pi \int_{\infty}^{2\pi} y^2 dx$.
$r \frac{1}{2} + \frac{1}{2} e^{-2} \text{ or } \frac{1}{2} + \frac{1}{2e^{2}}$ $Gene Gene (apai man)$ mani mani mani mani mani mani mani mani	-2 - 1	Hor the volume of colid when
Over Gene (apar mani answ	$e^2h = \frac{e^2+1}{e^2+1}$	region B is rotated about the v-axis
	7	Cover of the control
	$b - \frac{e^2 + 1}{2}$ or $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	students did not subtract π , x' dy
Overall Comments Generally well done by most students (apart from the poor algebraic manipulation to simplify to get the answer)	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	from the volume of cylinder
Overall Comments Generally well done by most students (apart from the poor algebraic manipulation to simplify to get the answer)		tions are totalled or cylinder.
Generally well done by most students (apart from the poor algebraic manipulation to simplify to get the answer)		Overall Comments
(apart from the poor algebraic manipulation to simplify to get the answer)		Generally well done by most students
nanguanon to simpiny to get the answer)		apart from the poor algebraic
		unaupurauon to sumpniy to get the

Overall Comments
- Students are given credit so long as their formulated integral is correctly done based on the graph sketched above (which may be

wrong) Students are encouraged to write $-\int_{x_i}^{x_2} f(x) dx$ or $\left| \int_{x_i}^{x_2} f(x) dx \right|$ if the

region is under the x-axis rather than $\int_{x_i}^{x_3} |f(x)| dx$ since we cannot

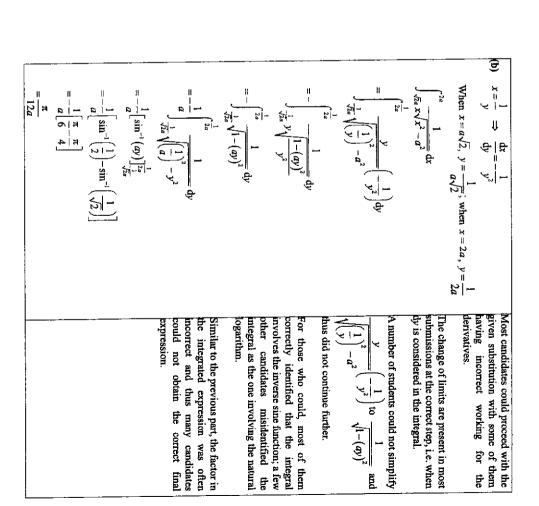
integrate |f(x)|.

 $0 \le x \le 3\pi$ cuts the x-axis at $x = 2\pi$, i.e. there is a region above the x-axis and another below the x-axis)

 $-\int_{2\pi}^{3\pi} \sin \frac{x}{2} dx \text{ since region is below}$

the x-axis)

(should

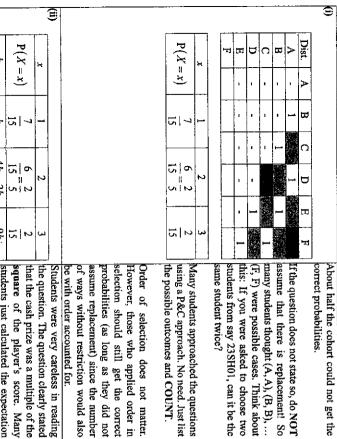

 $\int_{2\pi}^{\pi} \sin \frac{x}{2} \, dx$

 $\sin \frac{x}{2} dx$ (this is wrong because

the graph of $y = \sin \frac{x}{2}$

Question 5 (Integration Techniques)

	$=\frac{-x}{2(1+ax^2)}+\frac{\sqrt{a}}{2a}\tan^{-1}(\sqrt{a}x)+c$
	$= \frac{-x}{2(1+ax^2)} + \frac{1}{2a} \left(\frac{1}{\sqrt{a}} \right) \tan^{-1} \left(\frac{x}{\sqrt{a}} \right) + c$
their expressions e.g. $\frac{x}{\sqrt{a}}$, $2a$ etc.	$=\frac{-x}{2(1+\alpha x^2)}+\frac{1}{2a}\int \frac{1}{\left(\frac{1}{a}+x^2\right)}dx$
Many candidates who managed to do integration by parts could identify that integrating $\frac{1}{1+\alpha x^2}$ gives rise to the	$= \frac{-x}{2(1+\alpha x^2)} + \frac{1}{2} \int \frac{1}{(1+\alpha x^2)} dx$
$\frac{\alpha x^{2}}{(1+\alpha x^{2})^{2}} = \left(\frac{\alpha x}{(1+\alpha x^{2})^{2}}\right) \left(\frac{x}{(1+\alpha x^{2})^{2}}\right)$	$= \int (ax) \frac{x}{(1+ax^{2})^{2}} dx$ $= \frac{-1}{(1+ax^{2})^{2}} (ax) - \int (a) \frac{-1}{(1+ax^{2})^{2}} dx$
Many students could not apply integration by parts in the next part correctly due to poor algebraic techniques and wrote things like	$\int \frac{ax^2}{\left(1+ax^2\right)^2} dx$
Common Mistakes Some students reduced the power from -2 to -3 instead of increasing it to -1.	$\frac{2a (-1)}{1}$ $\frac{1}{2a(1+ax^2)}$
introducing the factor $2a$ in the expression.	$\frac{1}{1} \frac{(1+ax^2)^{-1}}{(1+ax^2)^{-1}}$
$\int \frac{f'(x)}{f'(x)} dx \text{and} \text{proceeded} \text{by}$	$=\frac{1}{2a}\int_{1}^{\infty}\frac{2\alpha x}{(1-x)^{2}}dx$
most candidates correctly identified the integral as a variation of the form	$\int \frac{1}{(1+ax^2)^2} dx$
This part is generally quite well done;	(a) $\int x$


Question 6 (Binomial Distribution)

$A \sim \mathbf{B}(2n+1,p)$	Almost the whole cohort could use the
P(A=n) = 0.009542	probability distribution of a binomial distribution to set up an equation
$ {2n+1 \choose n} p^n (1-p)^{n+1} = 0.009542 (1) $	involving p and n , and thus simplified the answer to the required form.
P(A = n + 1) = 0.004090	Among these, most could also obtain the correct value of n.
	However, many candidates overlooked that the number of observations in A is
Therefore, we have	2n+1 instead of n . I hus many gave their answers as 3.57 which were derived from $nn(1-n)$ instead of $(2n+1)n(1-n)$
$\binom{2n+1}{n+1}p^{n+1}(1-p)^n$ 0.004090	These candidates usually scored 3 marks.
lt	
$\Rightarrow \frac{n!(n+1)!}{(n+1)!!} \frac{p^{n+1}}{p^n} \cdot \frac{(1-p)^n}{(1-p)^{n+1}} = 0.428631 \text{ or } \frac{2045}{4771}$ $(n+1)!n!$	
$\Rightarrow \frac{p}{1-p} = 0.428631 \text{ or } \frac{2045}{4771} \text{ (shown)}$ $\Rightarrow p = 0.300 \text{ (to 3 s.f.)}$	
Hence $n = 17$ (from GC)	
and $Var(A) = 35(0.300)(0.700) = 7.35$ (to 3 s.f.)	

Question 7 (Sampling Theory)

	Assuming n is large, by Central limit Theorem,	About 50% of candidates provided
	$\frac{1}{V} \sim N \left(\frac{36}{2} \right)$	answers such as $n > 30$ or $n \ge 30$ which
	$A = IA \left(\frac{\mu_s}{\mu}\right)$ approximately.	were also accepted. So the part where an
_		assumption is needed was well answered
	$P(X - \mu > 0.5) < 0.02$	by many.
	()	Hourston than arona many why someon
	$P \left \frac{X - \mu}{X - \mu} \right > \frac{0.5}{4.000} \left < 0.02 \right $	that X has a normal distribution by
		Central Limit Theorem, which is
	(conceptually wrong. Marks are NOT
	$\mathbf{p}(\mathbf{z} < \sqrt{n}) < 0.03$	awarded for those who stated "X is
	$r\left(\frac{ z }{12}\right) < 0.02$	assumed to be normally distributed and
	Ry symmetry	hence \overline{X} has a normal distribution"
	(c) of transfer (c)	
	$P \mid Z > \frac{\sqrt{n}}{\sqrt{n}} \mid < 0.01$	Almost the whole cohort could
	(12)	demonstrate the skill of standardisation.
	Using GC	
		However, many went on to use the table
	VII > 2.326348	of values to determine the least n instead
	[2]	of using the invNorm function to find the
	$\sqrt{n} > 27.916$	least n (which many also achieved the
	n > 779.31	correct answer and most included
	Least n is 780.	'least').

Question 8 (Discrete Random Variables)

10 = 5/2 10

Let W denote the player's cash prize, in dollars, in their own undoing. one game.

So,
$$W = \frac{k}{10}X^2$$
.

$$E(W) = \frac{k}{10}(\frac{7}{15}) + \frac{4k}{10}(\frac{6}{15}) + \frac{9k}{10}(\frac{2}{15})$$

$$= \frac{49}{150}k$$

For the stall to be profitable in the long run, E(W)<10

$$k < \frac{1500}{49} \\ = 30.612.$$

Therefore, largest value of k is 30

$$\frac{49}{150}k < 10$$

$$k < \frac{1500}{49}$$

$$= 30.612.$$

students just calculated the expectation of X and multiplied it by k/10. Such that the cash prize was a multiple of the square of the player's score. Many students capped the maximum credit

 $\mathbb{E}(X^2) \neq (\mathbb{E}(X))^2$ A lot of students thought they could simply multiply the square of E(X) by k/10. This is also incorrect as

of the students who considered the attempted to involve some normal the variance of X and/or worse, the question is asking you and do only not even know the correct formula for variance of X even showed that they do distribution to solve the question. Some Many students proceeded to calculate worrying. Please make sense of what Var(X). All these observations are very

Question 9 (Hypothesis Testing)

3

If $y=x-k$, then $\bar{y}=\bar{x}-k \Rightarrow \bar{x}=\bar{y}+k$	population mean and variance.	Step 1: Calculate the unbiased estimates in
$\bar{x} = \bar{y} + k$		ates for the

$$\frac{\sum (x-300)}{60} + 300 = \frac{-112.8}{60} + 300 = 298.12;$$

$$s_x^2 = s_y^2 = \frac{1}{n-1} \left[\sum y^2 - \left(\sum y \right)^2 \right]$$

rounded off to 3 s.f..

$$s^2 = \frac{1}{59} \left(4532.87 - \frac{(-112.8)^2}{60} \right) = 73.234$$

Step 2: Define the population mean and state the typotheses.

get the correct

et μ be the population mean volume of filled cans

 $\mu_0 = CLAIMED$ value of the population mean μ = TRUE population mean (unknown) To test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$

level of significance To test $H_0: \mu = 300$ against $H_1: \mu \neq 300$ at 8%

Please remember the correct formulas for The unbiased estimates are both terminating decimals in this case, so they should not be parameters. finding unbiased estimates of population

Many students used incorrect symbols writing " $\overline{x} = ...$ " and " $s^2 = ...$ " instead of encouraged to keep things simple by just symbols like $\mu, \sigma^2, \sigma_x^2, \dots$ Students are represent the unbiased estimates, such were often incorrect. giving written phrases because the latter 8 S

not give complete contextualised definitions, such as merely writing "Let μ be the population mean.", or gave w definitions like "sample mean volume". Many students did not define μ . Others did or gave wrong

wrote "To test $H_0: \mu_0 = 300$ against about how to write the hypotheses. Some Many students were evidently confused against $H_1: \bar{x} \neq 300$ ". $H_1: \mu_1 \neq 300$ " or "To test $H_0: \bar{x} = 300$

"probability that the mean volume of iced tea per can is not 300 ml when it is 300 ml". This is referring to P(Ho is not true | Ho is true), which

(a) [continued]	There were many who wrote
Step 3: State the distribution of the test statistic.	$\overline{X} \sim N\left(\frac{298.12}{60}\right)$. It should not be
Under H ₀ , $Z = \frac{\overline{X} - 300}{ S ^2} \sim N(0,1)$ approximately	x̄ here! Need to write "approximately" and "by
$\sqrt{60}$ by Central Limit Theorem since $n = 60$ is large.	Central Limit Theorem" in this case since distribution of X is unknown.
Step 4: Calculate the p-value and compare it with the level of significance (or calculate the observed	Need to use uppercase letters when writing random variables to be followed by a probability distribution. Cannot write
test-statistic value and compare it with the critical value).	$\frac{\bar{x} - 300}{\sqrt{s^2}} \sim N(0,1)$ or $\frac{298.12 - 300}{\sqrt{73.234}} \sim N(0,1)$
From GC, p -value = 0.0888 > 0.08	$\sqrt{60}$ 80 as you would then be implying that a fixed
If p -value $\leq \alpha$, reject H_0 . If p -value $> \alpha$, do NOT reject H .	number has a probability distribution (which it does not).
x = 1.702 < 1.751. Thus we do not reject H ₀ .	There is no need to use normalcdf or invNorm functions to find the narelus or
	observed test statistic value; just use the
	divide p-value or level of significance by 2; these two quantities should include the areas
	at both "ends" of the normal distribution curve, not just one end.
	There are students who could not remember
	which seems to, p -value $\geq \alpha$ or p -value $< \alpha$, would lead to H_0 being rejected.

(a) [continued]	Some students wrote contradictory
	statements such as "We do not reject Ho and
Step 5: Write the conclusion in context.	conclude there is insufficient evidence to
There is insufficient evidence at 8% significance level to CONCLUDE (or CLAIM) that the mean volume of iced tea per can is not 300 ml.	claim that the mean volume of iced tea per can is 300 ml." (the latter part implies insufficient evidence to claim H ₀).
	The conclusion should always be written as "There is sufficient/insufficient evidence to conclude H,." Thus, you should not write:
	"We do not reject H ₀ and conclude there is
	sufficient evidence to claim that the mean
	volume of iced tea per can is 300 mi." (cannot use "accept H ₀ " phrasing).
	Also, you should not write affirmatively or
	assertively like "We do not reject H ₀ . Thus,
	the mean volume of iced tea per can is 300
	ml." or use assertive words such as "prove",
	"show". In Hypothesis Testing, we can never
	make a statement that is guaranteed to be
	values to make an inference to a certain
	degree of confidence, on the plausibility of
	the population parameter in question taking
	on a certain value or certain values.
(b) '8% level of significance' means that there is	To obtain this one mark,
a probability of 0.08 to conclude (or to claim)	• the probability of 0.08 must be written,
utat me population mean volume of iced tea ner can is not 300 ml when it is actually 300	and as a declinal of a fraction, not as a percentage
in.	 a clear contextualised wording for the
$\alpha = P(\text{reject H}_0 \text{H}_0 \text{ is true})$	level of significance must be given.
	Common mistakes:
	• "it is the lowest/maximum" Once an
	extremum term is included, no credit will
	be given. Level of significance refers to
	the exact probability of wrongly rejecting
	H ₀ ; "lowest" is for describing p-value.
	6611-01

(c) Let Y be the volume of iced tea in a randomly When a new test is involved, always check to chosen bottle in ral and μ_r be its population mean, see if the tail has changed. Do not assume that the hypotheses and tail remain the same as the

Under H_0 , $\overline{Y} \sim N \left(500, \frac{5^2}{35}\right)$ Observed test statistic z =

4 % level of significance

Therefore, the critical region for this test is given √35

ã

ÿ−500

 \Rightarrow $0 \le \overline{y} \le 498.5$ - ≤ -1.7507

35

ES.

NOT sample standard deviation! Don't go and estimate (which in any case, you should not be that should be used instead of any unbiased write things like $\frac{35}{34}(5^2)!$ using the value of s^2 from part (i) since that is Population standard deviation (5) is given, so carefully - 5 is population standard deviation, for volume per can). Also, interpret the question

exactly normal (and population variance is cnown). should not be used since the distribution of Y is approximately", "Central Limit Theorem"

Note that for rejection of the null hypothesis, critical value is included in the critical region, so the inequality should be non-strict.

write things like "critical region = ..." Make As the name "critical REGION" implies, it sense of what you are writing please values, not a discrete number, so please do not refers to a continuous frame like an interval of

To test $H_0: \mu_{\gamma} = 500$ against $H_1: \mu_{\gamma} < 500$ at previous part(s)! To see why this part involves a lower-tailed test. Firstly, one must understand that under any circumstances, the null hypothesis must be an equality and the alternative hypothesis

- must be a non-equality or inequality.
- Next, if this was instead an upper-tailed pointless test. null hypothesis would favour the claim that test, both rejection and non-rejection of the indeed at least 500ml, making it a very the mean volume of iced tea per bottle is

Thus, the only way out is to use a lower-tailed

the null hypothesis?", so giving an inequality for the observed test-statistic value (aka "z volume per bottle that would lead to rejection of what are the possible values of the sample mean question is asking: "In the context of this test, 'Critical region for this test" means the ...") is not going to gamer any credit

			not reliable.	data range of $2 \le x \le 10$, the estimate is	Since $x=11$ is not within the given \times Leaving the final answer		266.5 million.	The number of subscribers in 2024 is Leaving final answer	(d) $y = 15.57978 \ln(11) - 10.70594 = 26.65$.									y = 15.0 m x = 10.7 (3 S.t.)	1561m v _107 (2 ef)
x The answer omitted th	* The answer omitted x :	when $x = 11$. This wou	*Using the 3 s.f. version	y-value is 26.65)	* Leaving the final answ	2.665×10°).	number of subscripti	*Leaving final answer	Common mistakes:	of line.	×Using "≈"	26.65)	y = 266.5 n	* Leaving	266.5 millio	stating the	≭Leaving fir	x y = 15.6x -	Winai answe

Question 10 (Correlation and Regression)

3

(2, 4.23)	* (10, 25.18) ** * * * * * * * * * * * * * * * * *	
X : "	Common mistakes: *Not labelling the origin. *Not labelling the extreme points/values *Drawing 10 points instead of 9.	Well done.

	Well done.
d C is closer to	of C is closer to The explanation was generally well done.
ere is stronger	ere is stronger However, a significant number of students
than between	than between completely missed the requirement that
īt.	they had to find the equation of the
	regression line.

Well done

(c) Since the (absolute) r value for Mode

y and x^2 . Thus, Model C is a better f

linear correlation between y and $\ln x$ compared to that of Model D, the

By GC,

 $y = 15.57978 \ln x - 10.70594$ (7 s.f.)

(b)(ii) r = 0.9477**(b)(i)** r = 0.9567

				_	4	£	etween completely missed the requirement that	tronger However, a significant number of students
266.	statu	υ=1 (Τρου	(Final	omin	egress	hey h	ömple	lowev
	ng the	5.6x-	answ		regression line.	ad to	itely :	er, a s
266.5 million (or 2.665×10°).	stating the number of subscriptions as	* $y = 15.6x - 10.7$.	* Final answer not rounded to 3 s.f.	Common mistakes:	ਨ	they had to find the equation of the	nissed	ignific
2.66	er of		Dumo			the	pt.	ant m
5×10°	subs	36 36	ed to			equat	requir	ımber
newer	criptic	8	3 s.f.			ion	remen	of st
2	ons as	ithout				of the	t that	idents
							_	

x y = 15.6x - 10.7.
*Leaving final answer as 26.65 without
stating the number of subscriptions as
266.5 million (or 2.665×10 ⁸).
*Leaving the final answer as
y = 266.5 million . (The y-value is
26.65)
*Using "≈" instead of "=" for equation
of line.
nmon mistakes:
eaving final answer as 26.65 without stating the

Leaving final answer as 26.65 without stating the	F
number of subscriptions as 266.5 million (or	<u>e</u>
2.665×10 ⁸).	
Leaving the final answer as $y = 266.5$ million. (The	The
y-value is 26.65)	

range of y is irrelevant in determining reliability.	
 (Whether the estimated y-value is within the data	
within the data range as the reason for unreliability.	
*Stating that the estimated y-value of 26.65 is not	
2015 to 2023).	
× The answer omitted the data range for x , [2,10] (or	
* The answer omitted $x = 11$ or the year 2024.	
when $x = 11$. This would result in rounding errors.	
\times Using the 3 s.f. version of the equation to calculate y	

What matters here is only whether x = 11 is in the

data range of x, namely [2,10], or not.)

3	e) Model C is not suitable in the long run because the Any reasoning along the lines of "y	Any reasoning along the lines of " ν "
	model predicts that the number of subscriptions will increases as x increases" is insufficient as	increases as x increases" is insufficient as
	tend to infinity in the long run, which is not realistic. this description does not exclude the	his description does not exclude the
		possibility of asymptotic behaviour along
		a horizontal asymptote.
	_	Common mistakes:
		* Did not include the notion of number of
		subscriptions tending to infinity or
		increasing without limit.
	•	* Stating that that In x increases and tends
		to a limit (or plateaus) as x increases.
		(Recall from O-Levels that that
		lnx → ∞ as x → ∞.)
		*Using absolute terms such as "the
		number of subscribers will/would
		plateau".
		* Not stating whether the model is suitable
		or not.

Question 11(a) (Permutations and Combinations)

		Skills/Concepts Tested
	A B C	- "Complement" method or to consider
		cases
		- Read "not all the students in the same
3	Step 1: allocate the group of 3 into the positions	class are" as "not [all the students
	such that they are next to one another.	in the same class are]" hence we
	No. of ways $= 4 \times 3!$	can subtract the number of ways in
	Step 2: Allocate the rest of the 5 students to their	which [all the students in the same
	positions.	class are] from the total number of
	No. of ways $= 5!$	ways to arrange the 8 people
		Common Mistakes
	Total no. of ways such that not all the students in	Actions that need to be taken to
	the same class are standing next to one another	achieve the outcome are not
	$=8!-(4\times3!5!)$	complete, e.g.
	-3740	 students tended to forget to choose
	011	the people before arranging them
	Alternatively	- students only arranged people in
	Case (1) The 3 students are allocated to the same	one row but not the other
	row.	- total number of ways to arrange the 8 people in the 2 rows is
	ľ	
	X	$\begin{pmatrix} 7 & 41 & 4 & 41 \times 2 & \text{The} \times 2 & \text{is} \\ 4 & 4 & 4 & 4 & 4 & 4 & 4 \end{pmatrix}$
		redundant and meaningless
	Step 1: Choose one student from the remaining 5	Students considered micro-cases
	to take position X or Y and allocate the 3 students	(which were time-consuming and
	to take up the remaining position.	distracted them from considering
	No. of ways	cases that cover all grounds) like
	$-(5)(2)_{31}$	- 2 students from the same class are
	$-(1)(1)^{3}$	from the front row and 2 students
	09=	TOWN
	Step 2: Allocate the remaining 4 students in the	2 students from the same class in 1
	other rows. No. of ways = 4!	row are separated and 2 students
	Since there are two different rows, no. of ways for	from the same class in 1 row are
	= 60×4½2	together For the case where 3 students from
	= 2880	the same class are in 1 row, some
		students forgot to make sure that the
	Case (2) 2 Students from the same class stand in	4th person in that row must not be on
	one row, while the remaining student stand in the	either end
		A standard question that is not well
	spaces with 2 more students from the 3 and 3	
	No. of ways = $\begin{vmatrix} 2 \\ 2 \end{vmatrix} = 120$	
	Step 2: Arrange the students in the other row	
	No. of ways = 4!= 24	
	,	

		(E)	B
= 2304	Step 2. Slot in the girls and slot in the boys. No. of ways = 4! × 4! Total number of ways = 4! × 4! × 4	Hence total number of ways $= 2880 + 34560$ $= 37440$ Step 1 : Choose 2 girls and 2 boys to form one row and alternate either GBGB or BGBG No. of ways = $\binom{4}{2}\binom{4}{2}(2!2! \times 2 = 288)$ Step 2: Repeat alternate for the other row. No. of ways = $\binom{2}{2}\binom{2}{2}(2!2! \times 2 = 8)$ Total number of ways = 288×8 = 288×8 = 2304 Alternatively, Step 1. Four cases for boys and girls to alternate: BGBG BGBG, GBGB, BGBG, GBGB, GBGB	Since there are two different rows, no. of ways for case (2) = 720×24×2 = 34560
convey different meanings. Hence it is important for students to write the numbers in the correct form to convey the correct intention to the marker. Correct numerical answers without logical and sound workings will not be given	Overall Comments A standard question that is not well attempted by students Students need to be mindful that even though 2!, 2 and $\binom{2}{1}$ are equal, they	Skills/Concepts Tested "Boys and girls alternate" is NOT the same as "boys or girls are separated". Common Mistakes Actions that need to be taken to achieve the outcome are not complete. Students did the "slotting-in" method with the intention to separate the boys or the girls. Students forgot to consider the case where a boy/girl starts first in each row There is some confusion between the use of the Addition and Multiplication principles among a significant minority	

Question 11(b) (Probability)

Required Probability = $\frac{720 + 240}{5040} = \frac{4}{21}$ or 0.190	Total ways without restriction = 7! = 5040	Case 2: Teacher is between 2 team leaders from Hope ${}^{3}C_{1} \times 2 \times (6-1)! = 240$ Alternatively $(5-1)! \times 5 \times 2!$	Alternatively. $\binom{3}{2} \times (5-1)! \times 5 \times 2!$	(ii) Case 1: Teacher is between 2 team leaders from Grace ${}^{3}C_{2} \times 2! \times (6-1)! = 720$	Required probability = $\frac{720}{31824} = \frac{5}{221}$ or 0.0226	Total ways without restriction $= {}^{18}C_7 = 31824$	Total ways = $300 + 240 + 180 = 720$	Case 3: 2 Hope, 1 Grace and 1 Joy ${}^4C_2 \times {}^6C_1 \times {}^5C_1 = 180$	Case 2: 2 Joy, 1 Grace and 1 Hope ${}^{3}C_{2} \times {}^{6}C_{1} \times {}^{4}C_{1} = 240$	Case 1: 2 Grace, 1 Joy and 1 Hope ${}^{6}C_{2} \times {}^{5}C_{1} \times {}^{4}C_{1} = 300$	(i) Observe that all 3 students from Piety have to be selected in order for the conditions to be fulfilled.
		was not given unless students explained their thinking process.	used methods that were not commonly thought and they did not include their explanations. In such cases, full credit	Well performed by many, scoring full marks. However, there were some students who				was not given unless students explained their thinking process.	used methods that were not commonly thought and they did not include their explanations. In such cases, full credit	ere we	Well performed by many, scoring 3 or 4 marks. For those who scored 3 marks, it was often due to being careless in their calculations to get the numerical

Question 12 (Normal Distribution)

	houses.' house of 'inefficient' Common errors: -could not identify bin distribution from the que found the distribution of $S = S > 0.90$ 177 0.8096 1.79 0.8096 1.79 0.8096 189 0.8099 0.99 189 0.8096 1.80 1.80 1.80 189 0.8096 1.80 1.80 1.80 180 0.8096 1.80 1.80 1.80 180 0.8096 1.80 1.80 1.80 180 0.8096 1.80 1.80 1.80 180 0.8096 1.80 1.80 180 0.8096 1.80 1.80 180 0.8096 1.80 1.80 180 0.8096 1.80 1.80 180 0.8096 1.80 1.80 180 0.8096 1.80 1.80 180 0.8096 1.80 1.80 180 0.8096 1.80 1.80 180 0.8096 1.80 180 0.8096 1.80 180 0.8096 1.80 180 0.8096 1.80 180 0.8096 1.80 180 0.8096 1.80 180 0.8096 1.80 180 0.8006 180 0.8006
<u> </u>	

Learning points: - Be familiar with the laws of expectation and variance for independent random variables. Clear working should be shown to secure method marks in case of arithmetic errors. - You are advised to express as a combination of independent random variable first, for e.g. T=0.26(W ₁ +W ₂), before finding the corresponding expectation and variance. Remember to write -N(mean, variance)	
intersection of the two events $T > 270$ and $250 < T < 280$. For assumption needed, errors include "independence across households", "amount of electricity used is the same for each month", sample size > 30 ", "probability of	We need to assume that the electricity used in each of these two months is independent for this particular household.
-did not apply conditional probability correctly. The numerator should be $P(A \cap B)$. Some students wrote $P(A)P(B)$. This is wrong as we do not know if A and B are independent. Must take	$P(T > 270 250 < T < 280) = \frac{P(270 < T < 280)}{P(250 < T < 280)}$ $= \frac{0.36425}{0.76383}$ $= 0.490 (3 s.f.)$
- Mistook $W_1 + W_2$ as $2W$ - Did not var(aX) = a^2 Var(X) correctly. - Used standard deviation instead of variance; used 27 instead of 27^2 as the variance	(kWh) used in the household in a month.' - Mistook $W_1 + H$ $W \sim N(524, 27^2)$ - Did Let $T = 0.26(W_1 + W_2)$. Var $(aX) = a^{2x}$ E(T) = $0.26 \times 524 \times 2 = 272.48$ - Used standard Var(T) = $0.26^2 \times 2 \times 27^2 = 98.5608$ variance; used $T \sim N(272.48, 98.5608)$ the variance

(d) Let G denote the ran	dom variable 'time taken (min) to	(d) Let G denote the random variable "time taken (min) to Most students can answer this part well.
$G \sim N(\mu, \sigma^2)$.		information into two simultaneous equations and solve them using their
P(G < 38) = 0.15,	P(G > 53) = 0.4	calculator. Take note to write the equation in the form $ax + by = c$.
$p(7 < \frac{38 - \mu}{100}) = 0.15$	$p(7 > \frac{53-\mu}{2}) = 0.4$	1
1 (2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 -0.7	Common errors:
By G.C.,		wrote $\frac{\mu - X}{2}$, $\frac{X - \mu}{2}$
$\frac{38-\mu}{}=-1.0364$	$\frac{53-\mu}{}=0.25335$	- did not use InvNorm to get the z-value,
q	9	still wrote as 0.4, 0.15 on the RHS of
$\mu - 1.0364\sigma = 38 6$	$\mu - 1.0364\sigma = 38 (1), \ \mu + 0.25335\sigma = 53 (2)$	the equation.
Solving (1) and (2):		_
$\mu = 50.0535 = 50.1 (3 \text{ s.f.})$	s.f.	
$\sigma = 11.6298 = 11.6$ (3 s.f.)	s.f.)	