

EUNOIA JUNIOR COLLEGE JC2 PRELIMINARY EXAMINATIONS 2024 General Certificate of Education Advanced Level Higher 2

CANDIDATE NAME				
CIVICS GROUP	2	3	-	REGISTRATION NUMBER
PHYSICS Structured Questions				9749/02
				September 2024 2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, civics group and registration number on all the work you hand in. The use of an approved scientific calculator is expected where appropriate. Answer all questions.

Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use paper clips, highlighters, glue or correction fluid. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
Q1	10
Q2	10
Q3	10
Q4	8
Q5	6
Q6	6
Q7	10
Q8	20
s.f.	
P2 Total	80

Data

speed of light in free space,	$c = 3.00 \times 10^8 \text{ m s}^{-1}$
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$
permittivity of free space,	$\varepsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$
	$(1/(36\pi))\times10^{-9} \text{ F m}^{-1}$
elementary charge,	$e = 1.60 \times 10^{-19} \text{ C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \text{ J s}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \text{ kg}$
molar gas constant,	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
the Boltzmann constant,	$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
acceleration of free fall,	$g = 9.81 \text{ m s}^{-2}$

Formulae

uniformly accelerated motion,

$$s = ut + \frac{1}{2}at^2$$
$$v^2 = u^2 + 2as$$

work done on/by a gas,

$$W = p\Delta V$$

hydrostatic pressure,

$$p = \rho g h$$

gravitational potential.

$$\phi = -\frac{Gm}{r}$$

temperature,

$$T / K = T / {^{\circ}C} + 273.15$$

pressure of an ideal gas.

$$p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle$$

mean translational kinetic energy of an ideal gas molecule

$$E = \frac{3}{2}kT$$

displacement of particle in s.h.m.

 $x = x_n \sin \omega t$

velocity of particle in s.h.m.

$$v = v_0 \cos \omega t$$

= $\pm \omega \sqrt{(x_0^2 - x^2)}$

electric current,

I = Anvq

resistors in series,

$$R = R_1 + R_2 + \dots$$

resistors in parallel,

$$1/R = 1/R_1 + 1/R_2 + \dots$$

$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

alternating current/voltage,

$$x = x_0 \sin \omega t$$

magnetic flux density due to a long straight wire

$$B = \frac{\mu_0 I}{2\pi d}$$

magnetic flux density due to a flat circular coil

$$B = \frac{\mu_0 NI}{2r}$$

magnetic flux density due to a long solenoid

$$B = \mu_0 nI$$

radioactive decay,

$$x = x_0 \exp(-\lambda t)$$

decay constant

$$\lambda = \frac{\ln 2}{t_{\frac{1}{2}}}$$

1	(a)	State the two conditions necessary for a system to be in equilibrium.
		(i)
		(ii)[2]
	(b)	Explain what is meant by the centre of gravity of a body.
		[1]
	(c)	A rod AB is hinged to a wall at A. The rod is held horizontally by means of a cord BD, attached to the rod at end B and to the wall at D, as shown in Fig. 1.1.

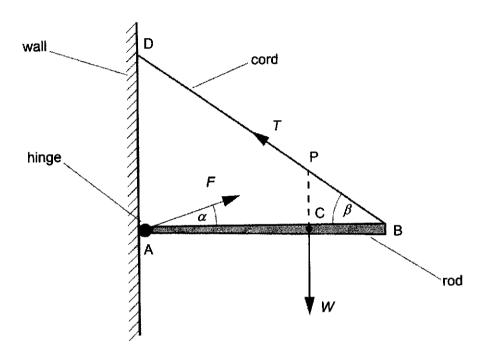


Fig. 1.1

The rod has weight \boldsymbol{W} and the centre of gravity of the rod is at \boldsymbol{C} .

The rod is held in equilibrium by a force T in the cord and a force F produced at the hinge.

(i)	The line of action of the weight W of the rod passes through the cord at point P .
	Explain why, for the rod to be in equilibrium, the force F produced at the hinge must also pass through point P.
	ros
	[2]

(ii)	It is given that $W = 10 \text{ N}$, $\beta = 30^{\circ}$ and length AC = $\frac{2}{3}$ AB
	Calculate 1. tension <i>T</i> , and

2. angle α .

T = N [2]

[Total: 10]

2 (a) An object of mass 0.80 kg is placed at a distance r from the centre P of a flat disc rotating horizontally with an angular speed ω . It undergoes circular motion with the disc, as shown in Fig. 2.1.

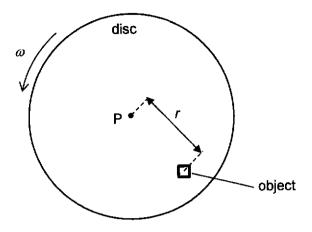
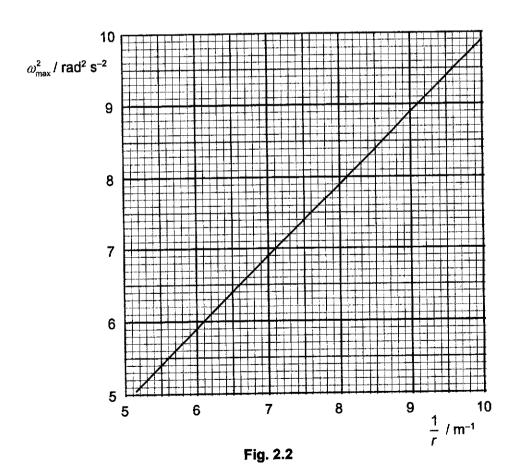



Fig. 2.1 (top view)

To determine the maximum frictional force acting on the object, the angular speed is slowly increased until the object starts to slide. For different values of r, this value of the angular speed is recorded as ω_{max} . The variation with $\frac{1}{r}$ of ω_{max}^2 is shown in Fig. 2.2.

	(1)	object at the instant shown. Label this arrow Z.	ol force acting on the [1]
	(ii)	Explain the direction of the frictional force in (a)(i).	
(b)	(i)	Determine the gradient of the line in Fig. 2.2.	
		gradient =	[2]
	(ii)	Suggest the physical significance of the gradient. Show any ne	- -
		· ·	, ,
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			[2]
(c)	Dete	rmine the maximum frictional force acting on the object.	
		maximum frictional force =	N [2]
(d)	Expl	ain why the object starts to slide as angular speed increases.	1-1

			•••••
			••••••••••
			[2]
			[Total: 10]
©EJC 2024		9749/J2H2PRELIM/2024	[Turn over

3	(a)	Expl	lain what is meant by a free oscillation,	
				[1]
		(ii)	the natural frequency of an oscillating body.	
				[1]

(b) A strip of metal is clamped to the edge of a bench and a mass is hung from its free end as shown in Figure 3.1.

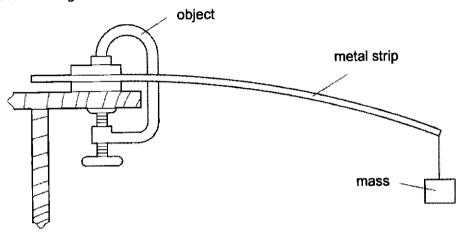


Fig. 3.1

The end of the strip is pulled downwards by 2.0×10^{-3} m and then released.

Fig. 3.2 shows the variation with time t of the displacement y of the end of the strip.

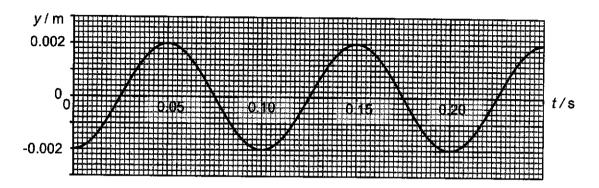


Fig. 3.2

On Fig. 3.3, show the corresponding variation with time t of the potential energy $E_{\rm P}$ of the vibrating system from t=0 to t=0.20 s. Assume the vibrating system to have a mass of 200 g.

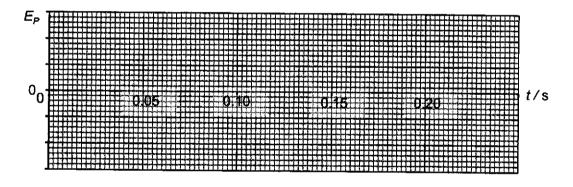


Fig 3.3

[3]

(ii) On Fig. 3.4, sketch the variation with displacement y of the velocity v of the end of the strip.

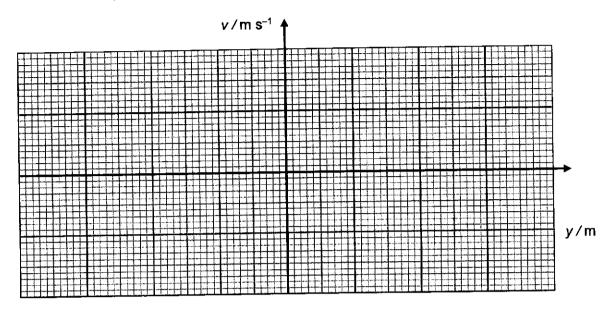


Fig 3.4

[3]

- (ii) The string supporting the mass breaks when the end of the strip is at its lowest point in an oscillation.
 - 1. State what change, if any, will occur in the period of the subsequent motion of the end of the strip.

period:

2. State and **explain** the change, if any, on the amplitude of the subsequent motion of the end of the strip.

amplitude. [2]

[Total: 10]

4	(a)	(i)	State the principle of conservation of linear momentum.
			[1]
		(ii)	State the relation between force and momentum.
			[1]
	(b)	A fas 14 <i>m</i>	st-moving neutron of mass <i>m</i> collides head-on with a stationary nitrogen atom of mass as illustrated in Fig. 4.1.
			neutron mass nitrogen atom
			Fig. 4.1
		The	neutron is captured by the atom to form a heavy isotope of nitrogen of 15m.
		(i)	Explain the subsequent motion of the isotope given that the collision is head-on.
			[1]
		(ii)	Calculate the ratio of kinetic energy of the heavy isotope of nitrogen to the initial kinetic energy of the neutron.

ratio of kinetic energy =[3]

iii)	Hence or otherwise, explain whether the collision process whereby the neutron is captured is elastic or inelastic.
	[2]
	[Total: 8]

5 Fig. 5.1 shows two circular coils X and Y that are fixed in position.

The planes of both coils are parallel and their centres lie along a common axis PQ.

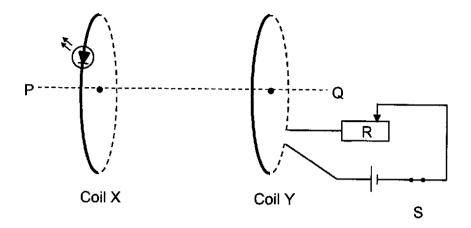
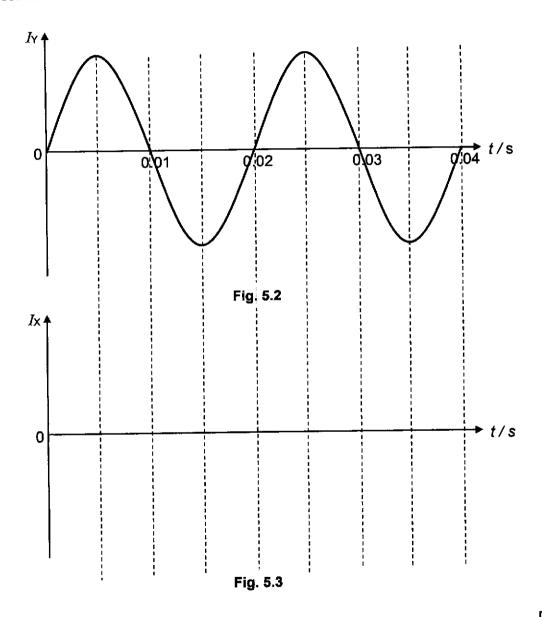


Fig. 5.1

A light emitting diode (LED) is connected to coil X.

Coil Y is connected to a cell, a switch S and a variable resistor R.

R is set to its maximum value and S is closed.


a)	observed of the LED when S is opened.	bε
		.
		41

(b) The cell in Fig. 5.1 is now replaced by an alternating voltage source.

The sinusoidal current flowing through coil Y is shown in Fig. 5.2.

Current flowing in the clockwise direction, when the coils are viewed from Q, is taken as positive.

On the axes of Fig. 5.3, sketch the variation with time t of the current I_X flowing through coil X from t = 0 to t = 0.040 s.

[2]

[Total: 6]

6 (a) An ideal iron core transformer is shown in Fig. 6.1.

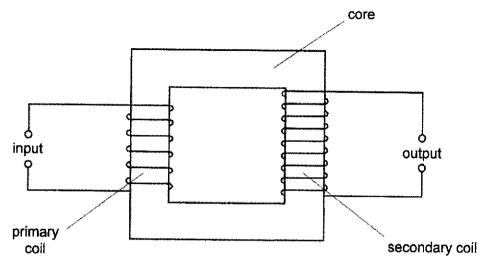


Fig. 6.1

Exp	lain en la company de la c
(i)	why the iron core is laminated,
	[1]
(ii)	why the alternating current in the primary coil of a transformer is not in phase with the alternating e.m.f. induced in the secondary coil.
	[3]
An ic coil.	deal transformer has 300 turns on the primary coil and 8100 turns on the secondary
The	root-mean-square input voltage to the primary coil is 9.0 V.
Calc	ulate the peak voltage across the load resistor connected to the secondary coil.

peak voltage = V [2]

[Total: 6]

(b)

7 (a) Fig. 7.1 shows the path of a beam of electrons before it passes through a magnetic field.

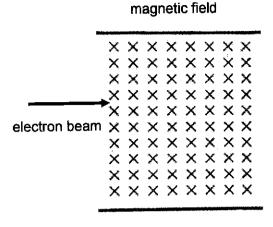


Fig. 7.1

The magnetic flux density in the uniform magnetic field is 0.0050 T. Each electron enters the magnetic field with a speed of $v = 5.0 \times 10^6 \, \text{m s}^{-1}$.

(i)	The magnetic force causes the electrons to accelerate in the magnetic field. Explain whether the force does work on the electron.
	F41
	[1]
(ii)	Determine the magnetic force acting on the electron.
	magnetic force =N [2]

(iii) Show that the radius of the electrons' path is 5.7 mm.

(iv) If a proton beam is used instead and the protons travel at the same speed as the electrons, explain qualitatively why this setup may not be practical in a typical school laboratory.

***************************************	••
	[2]

(b) Another beam of electrons enters a uniform electric field between two parallel plates at right angles to the field as shown in Fig. 7.2. The region between the plates is a vacuum.

Each electron has mass m, charge e and speed v.

The length of the plates is x, the separation of the plates is d and the potential difference across the plates is V.

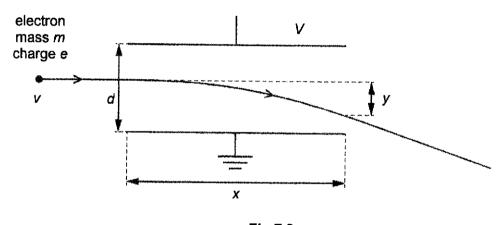


Fig 7.2

The vertical deflection of the electron is y at the point where it leaves the region between the plates.

Write down an equation for y in terms of d, e, m, v, V, and x. Show your working.

[Total:10]

©EJC 2024

[Turn over

8 Read the passage below and answer the questions that follow.

lonizing radiation affects DNA molecules within cells, which are critical in cell reproduction. It has its greatest effect on cells that rapidly reproduce, including most types of cancer. It can induce cancer and cure cancer. It is used routinely for medical diagnostic purposes.

The biological effects of ionizing radiation on living tissue are directly proportional to the amount of ionization produced in the living tissue. The amount of ionization produced is in turn proportional to the energy deposited.

Absorbed dose of a radiation refers to the amount of ionizing radiation energy absorbed per unit mass of tissue. The unit for absorbed dose is the gray (Gy), which is defined to be

$$1 \text{ Gy} = 1 \text{ J kg}^{-1}$$
.

The biological effects of ionizing radiation also depend on the type of radiation and the type of tissue. **Dose equivalent** of a radiation considers both the amount of radiation absorbed and the medical effects of that type of radiation. It is calculated by multiplying the absorbed dose in grays by a quality factor called the **relative biological effectiveness (RBE)**, and is measured in **sievert (SV)**.

$$1 \text{ Sv} = 1 \text{ Gy} \times \text{RBE}$$

Table 8.1 gives the RBE values for several types of ionizing radiation.

Type and energy of radiation	RBE
X-rays	1
γ rays	1
β rays (> 32 keV)	1
β rays (< 32 keV)	1.7
neutrons, thermal to slow (< 20 keV)	*5
neutrons, fast (1 - 10 MeV)	10 (body), 32 (eyes)
protons (1 - 10 MeV)	10 (body), 32 (eyes)
α rays from radioactive decay	*20
heavy ions from accelerators	*20

^{*}only maximum values provided

Table 8.1

The greater the dose equivalent, the greater the biological effects. If a radiation exposure is spread out over a longer duration, greater doses are needed to cause the same biological effect. This is due to the body's ability to partially repair the damage.

Laws regulate radiation doses to which people can be exposed. The greatest occupational whole-body dose that is allowed is about 20 to 50 mSv in a year and is rarely reached by medical and nuclear power plant workers.

(a)	(i)	With reference to Table 8.1 and the characteristics of the different ionising radiations, explain the following:
		1. α rays have a higher RBE than X-rays, γ rays and energetic β rays.
		2 Northern de 11 11 11 11 11 11 11 11 11 11 11 11 11
		2. Neutrons do not carry any electrical charge but have an RBE greater than 1.
		[1]
	(ii)	To limit or reduce radiation doses, one general principle is to <i>limit the time of exposure</i> . Suggest two other general principles to limit radiation doses.
		[2]
	(iii)	Calculate the dose absorbed over a period of one year by the lung tissue of a weapons plant employee who inhales and retains plutonium-239 in an accident. The activity of the plutonium-239 inhaled remains approximately constant at 3.70×10^4 Bq over many years.
		The mass of the affected lung tissue is 2.00 kg, and each plutonium-239 nucleus decays by emitting a 5.23 MeV α -particle.
		dose = Sv [3]

(b) A radioactive tracer is a drug that contains radioactive isotopes. It can be injected into a patient. Gamma emitters make good radioactive tracers.

Once the tissues and organs have absorbed the tracer, radiation from the tracer is captured by a special camera outside the body that produces images, allowing doctors to diagnose the condition of the patient.

(i) In addition to being safer since gamma radiation has a lower RBE, suggest one other advantage of using a gamma-emitting tracer in a patient, rather than a betaemitting tracer.

(ii) Biological half-life is the time taken by the human body to eliminate, by natural excretion, half of the amount of a substance (such as a radioactive material) that has entered the body. The process is approximately exponential.

The effective decrease of radioactivity of a tracer in the body is due to both the physical decay of the tracer and the biologic elimination of the tracer by the body.

The effective decay constant $\lambda_{\mathcal{E}}$ of the tracer is given by

$$\lambda_{\mathcal{E}} = \lambda_{\mathcal{B}} + \lambda_{\mathcal{T}}$$

where λ_T is the nuclear decay constant of the radioisotope in the tracer, and λ_B is the biological decay constant of the tracer.

Show that the effective half-life t_E of the tracer is given by

$$t_E = \frac{t_T t_B}{t_T + t_B}$$

where t_T is the nuclear half-life of the radioisotope in the tracer, and t_B is the biological half-life of the tracer.

(iii)	i) A patient is given an injection containing 1.0×10^{-12} g of technetium-99m, whas a nuclear half-life of 6.02 hours. The molar mass of technetium-99m is 99		
	1.	Show that the initial activity of the technetium-99m is $1.9\times10^5\text{Bq}.$	
		activity = Bq [2]	
	2.	Calculate the effective half-life of the technetium-99m if its biological half-life in the body is 24 hours.	
		offortive half life - L. 143	
	_	effective half-life = h [1]	
	3.	Determine the activity of the technetium-99m remaining in the patient 3.0 days after the injection.	
		activity = Bq [2]	

(c) It is often convenient to represent the decay of a radioactive sample with time using a semi-log graph as it produces a straight-line plot.

When a sample contains a mixture of unrelated radioactive nuclides (i.e. no parent-daughter relationships), the total activity A_{total} of the sample is just the sum of the individual activities of the different nuclides.

$$A_{total} = A_1 + A_2 + \dots$$

where A_1 is the activity due to the first nuclide,

and A_2 is the activity due to the second nuclide, and so on.

In this case, the plot of A_{total} against time will be a curve on the semi-log graph.

Fig.8.1 shows the total activity curve A_{total} for a sample consisting of two unrelated radioactive nuclides. The dashed line A_1 is the activity curve for nuclide 1, which has the longer half-life. Nuclide 2 has an activity of 5 Bq on day 18, indicated by point P.

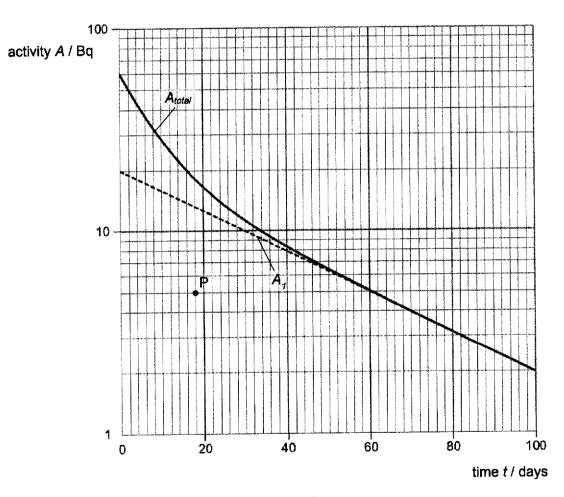


Fig. 8.1

(i)	Explain why the slope of the graph of A_{total} against time will eventually follow the slope of the line for the activity of the radioactive nuclide having the longer half-life.
	[1]
(ii)	State the half-life of nuclide 1.
	half-life = day [1]
(iii)	Determine the initial activity of nuclide 2 at $t = 0$ day.
	activity = Bq [1]
(iv)	Draw a line in Fig.8.1 to show the variation with time t of the activity of nuclide 2. Label this line A_2 . [1]
(v)	Hence or otherwise, determine the half-life of nuclide 2.
	to de tre
	half-life = day [1]
	[Total: 20]

24

BLANK

Qns	Answer of the Answer of Charles of the Answer of the Charles of the Answer of the Charles of the Answer of the Charles of the	Marks
1(a)	Resultant force acting on the body is zero. Resultant moment OR Torque about any point is zero.	B1 B1
1(b)	Point at which whole weight of body may be considered / seems to act.	B1
1(c)(i)	Since T and W have zero moment about P (because their line of actions passes through P), so F must have zero moment, i.e. line of action of F must pass through P	B1 B1
	OR When all forces have lines of actions that pass through P, (perpendicular) distance from P is zero for all forces (M1), so sum of moments about P is zero	

1(c)(ii)1.	By principle of moment and taking moments about A,	B1
	$2W = 3T \sin \beta$ $2(10) = 3T \sin 30^{\circ}$	A1
-	T = 13.3 N	
1(c)(ii)2.	Sum of forces in the vertical direction and horizontal direction are both zero.	B1 Horizontal B1 Vertical
	Considering horizonal forces: $F\cos\alpha = T\cos\beta$ (1) Considering vertical forces: $W = F\sin\alpha + T\sin\beta \Rightarrow F\sin\alpha = W - T\sin\beta$ (2)	A 1
	$\frac{\text{Eq(2)}}{\text{Eq(1)}}: \tan \alpha = \frac{W - T \sin \beta}{T \cos \beta} = \frac{10 - 13.3 \sin 30}{13.3 \cos 30}$ $\alpha = 16.2^{\circ}$	
	(Physics statements to be present to score full credit)	
	Alternative method (for both parts):	
	$\tan \alpha = \frac{h}{2L}$ $\tan \beta = \frac{h}{L}$ $\tan \alpha = 0.5 \tan \beta$ $= 0.5 \tan 30^{\circ}$ $\alpha = 16^{\circ}$	
	$ \gamma = 90^{\circ} - \alpha = 90^{\circ} - 16^{\circ} = 74^{\circ} $ Using sine rule, $ \frac{T}{\sin \gamma} = \frac{W}{\sin(\alpha + \beta)} $ $ T = \frac{10}{\sin(30^{\circ} + 16^{\circ})} \times \sin 74^{\circ} $ $ = 13.4 \text{ N} $	

"Qns	Answer Late 1 to 1	Marks
2(a)(i)	An arrow originating from the object, pointing towards point O, and labelled Z.	B1
2(a)(ii)	The frictional force provides the centripetal force, and hence must point towards the centre of the disc.	B1
2(b)(i)	Using points (6.00, 5.90) and (9.00, 8.90) on the line	B1
	Gradient = $\frac{8.90 - 5.90}{9.00 - 6.00} = 1.00$	B1
2(b)(ii)	gradient = $\frac{\omega_{\text{mex}}^2}{\frac{1}{r}} = r\omega_{\text{mex}}^2 = a_{c(\text{max})}$	B1
	Hence, the gradient is numerically equal to the <u>maximum centripetal</u> <u>acceleration</u> .	A1*

2(c)	$f = \text{gradient} \times m$	
	= 1.00 × 0.80	C1
	= 0.80 N	A 1
(d)	As angular speed increases, required centripetal force increases. (friction provides required centripetal force)	B1
	When required centripetal force exceeds maximum frictional force possible, object slides.	B1

	AND THE PROPERTY OF THE PROPER	
3(a)(i)	Free oscillations are oscillations with	
	constant amplitude and	
	without energy loss or gain as there is no driving or resistive forces acting on it.	B1
	as there is no diffing or resistant as a second of	i
3(a)(ii)	Natural frequency is the	
	frequency at which a body will vibrate when there is no driving or no resistive forces acting on it.	B1
	when there is no unving or no realistive forces down g on the	
3(b)(i)	<i>E</i> _P /J	B1
	0.003	correct
!	0.002	sine-square shape, all
	0.00158	above x-axis B1
	0.001	correct
		period & phase B1
	0.000	correct
	-0.001	max E _p indicated
	-0.002	
	0.003	1
	$E_{p(mex)} = \frac{1}{2} m y^2 \omega^2 = \frac{1}{2} (0.200) (0.002)^2 \left(\frac{2\pi}{0.1} \right)^2$	
	= 0.00158 J	
		B1
3(b)(ii)	v/m s ⁻¹	Correct &
	V/ms.	smooth shape
	0.126	B1
		correct max v caln
		at y=0 B1
	-0.002 0.002 y/m	correct
		max <i>y</i> at <i>v</i> =0
	-0.126	
	i i	
	2- 2-	
	$v_0 = \omega y_0 = \frac{2\pi}{T} y_0 = \frac{2\pi}{0.1} (0.002) = 0.126 \text{ m s}^{-1}$	
	7 0.1	
3(b)(iii)	Period decrease.	B 1
	Equilibrium point is raised once the mass is removed.	B1
	Hence amplitude increases.	
@E (C 0004	9749/12H2PRFI IM/2024	<u> </u>

©EJC 2024

Orie	THE AND THE PARTY OF THE PARTY	
4 (a)(i)	The Principle of Conservation of Linear Momentum states that the total linear momentum of an isolated system of interacting bodies before and after collision remains constant if no net external force acts on the system. OR	Marks B1
	The Principle of Conservation of Linear Momentum states that the total linear momentum of a system remains constant provided that no resultant external force acts on the system.	
(a)(ii)	The resultant force acting on a body is proportional to the rate of change of momentum of that body.	B1
(b)(i)	After collision, the bodies will move along the same line that joins the 2 bodies' centre of mass rightwards.	B1
(b)(ii)	By principle of conservation of momentum:	
	mu + 14m(0) = 15mV	C1
	$V = \frac{1}{15}u$ Ratio of kinetic energy	
	$(\sqrt{\epsilon})^2$	M1
	$= \frac{KE_{nitrogen}}{KE_{neutron}} = \frac{\frac{1}{2}MV^2}{\frac{1}{2}mv^2} = \frac{15m\left(\frac{V}{15}\right)^2}{m(V^2)} = \frac{1}{15} = 0.067$	A 1
(b)(iii)	From (bii), since initial total KE before collision not equals to final total KE	M1
-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y	after collision, the collision is not elastic (inelastic).	A1
,	OR	
	Since there is no relative separation between the neutron and nitrogen atom after collision, the relative speed of approach is not equals to relative speed of separation, the collision is not elastic (inelastic).	

	Adayer - Jept Committee of the Committee	MAKE I
5 (a)	When S is opened, current in coil Y stops flowing and the magnetic flux produced by the current in coil Y decreases. Hence magnetic flux density through coil X decreases.	B1
	By Faraday's Law, an electromotive force is induced in coil X.	B1
	By Lenz's Law, the induced emf in coil X would be in a direction so as to produce effects to oppose the decrease in the magnetic flux density.	B1
	The induced emf would have produce current, in coil X in the clockwise direction when viewed from Q. But since this current would be in reversed biased direction, LED remain unlit.	B1
	(For last B1, Student to either describe direction of current to be CW (from Q)	
	leading to LED unlit OR describe current being in reversed biased direction leading to LED unlit.)	
5b	Ix↑	
	0.01 0.02 0.03 0.04 t/s	B1 Negative cosine graph B1 Rectified in the correct regions

Qns	的服务型工作的编码。如果你们的原则是是 <mark>Auswor</mark> m,并在22 ming,是主要的是是是否的企业。	Marks
6(ai)	Lamination increases resistance, thus reduces induced (eddy) current in the iron core, which would reduce heat loss.	M1
6(aii)	Alternating current in primary coil (I_{pri}) give rise to changing magnetic flux (ϕ) in the primary coil and the iron core. Thus primary coil current is in phase with the magnetic flux.	B1
	This changing magnetic flux (ϕ) links the secondary coil through the iron core.	B1
	E.m.f. induced in secondary coil ($E_{\rm sec}$) is proportional to <u>rate</u> of change of flux (ϕ). Secondary coil e.m.f. ($E_{\rm sec}$) is not in phase with the flux (ϕ).	B1
	(Hence e.m.f induced in secondary coil not in phase with alternating current in primary coil.	

6(b)	$ \left(\frac{V_{sec}}{V_{pri}}\right)_{rms} = \frac{N_{sec}}{N_{pri}} $ $ (V_{sec})_{rms} = \frac{8100}{300} \times 9.0 = 243 \text{ V} $	C 1
	Peak voltage across load = $(V_{sec})_{ms} \times \sqrt{2} = 243 \times \sqrt{2}$ = $3.4 \times 10^2 \text{ V}$	A 1

7(a)(i)	The force on the electron is (always) perpendicular to the <u>velocity</u> / perpendicular to the <u>direction of travel/motion</u> of the electron.	B1
	Thus no work is done by the force on the particle. (The speed remains unchanged and the force changes its direction.)	
7(a)(ii)	F = Bqv	04
	$=(0.0050)(1.60\times10^{-19})(5.0\times10^{6})$	C1 A1
	$=4.0\times10^{-15}$ N	
7(a)(iii)	Magnetic force provides the centripetal force.	B1
	F = ma	
	$= m\left(\frac{v^2}{r}\right) \qquad \qquad \left(Bqv\right) = m\left(\frac{v^2}{r}\right)$	
	$r = \frac{mv^2}{E}$ $r = \frac{mv}{Bq}$	
	(0.11, 10 ⁻³¹)(6.0, 10 ⁶)	
	$=\frac{(9.11\times10^{-31})(5.0\times10^{8})^{2}}{4.0\times10^{-15}} = \frac{(9.11\times10^{-31})(5.0\times10^{-19})}{(0.0050)(1.60\times10^{-19})}$	
	$= 5.69 \times 10^{-3} $ = 5.69×10^{-3}	
	= 5.7mm = 5.7mm	B1
	1	
7(a)(iv)	Radius of path is proportional to its mass.	B1
	Mass of proton is many order of magnitude larger than the electron implies the radius of the proton would be many orders of magnitude larger (and is too large as compared to a typical laboratory).	B1
7(b)	$F = ma \Rightarrow eE = ma \Rightarrow e\frac{V}{d} = ma \Rightarrow a = \frac{eV}{md}$ (1)	M1
	$t = \frac{x}{y} \qquad \dots (2)$	
1	Substituting (1) & (2):	
}	$y = yd + \frac{1}{2}at^2$	
	-	M1 Correct
	$=\frac{1}{2}\left(\frac{eV}{md}\right)\left(\frac{x}{V}\right)^2$	substitution into the correct
		kinematics formula
	$= \left(\frac{eV}{2mdv^2}\right) x^2$	A1

Qns	Answer Color to the Color of th	Warks 1
8(a)(i)1	α particles have greater ionisation power than X-rays, γ rays and energetic β rays.	B1
	Hence, there is greater damage (biological effect stated in the last sentence in the 2^{nd} last para on pg 18) produced by α particles.	B1
8(a)(i)2	Neutrons can be absorbed by the nucleus of an atom to <u>form a radioactive isotope</u> , which is unstable and produces secondary <u>ionising radiations</u> .	B1
8(a)(ii)	Shield from source using suitable materials. Increase the distance from a source.	B2
8(a)(iii)	Absorbed dose = energy deposited per year mass of tissue = (no. of decay)(energy released per decay) mass of tissue	
	$= \frac{\left[(3.70 \times 10^4)(365 \times 24 \times 3600) \right] \left[(5.23 \times 10^6)(1.60 \times 10^{-19}) \right]}{2.00}$ $= 0.489 \text{ Gy}$	C1 C1
	Dose equivalent = (absorbed dose)×RBE = 0.489×20	
	= 9.8 Sv year ⁻¹	A1

8(b)(i)	Gamma rays can pass through the tissue of the body to be captured by the camera outside while beta particles will be stopped by the body tissue.	A1
8(b)(ii)	$\lambda_{E} = \lambda_{B} + \lambda_{T}$ $\frac{\ln 2}{t_{E}} = \frac{\ln 2}{t_{B}} + \frac{\ln 2}{t_{T}}$ $t_{E} = \frac{t_{T}t_{B}}{t_{T} + t_{B}}$	B1
8(b)(iii)1	$A_{o} = \lambda N_{o}$ $= \left(\frac{\ln 2}{t_{T}}\right) \left(\frac{M}{\text{molar mass}} \times N_{A}\right)$ $= \left(\frac{\ln 2}{6.02 \times 3600}\right) \left(\frac{1.0 \times 10^{-12}}{99} \times 6.02 \times 10^{23}\right)$ $= 1.94 \times 10^{5}$ $= 1.9 \times 10^{5} \text{ Bq}$	B1 B1
8(b)(iii)2	$t_{E} = \frac{t_{T}t_{B}}{t_{T} + t_{B}}$ $= \frac{6.02 \times 24}{6.02 + 24}$ $= 4.8 \text{ h}$	A1
8(b)(iii)3	$A = \left(\frac{1}{2}\right)^{t/t_E} A_0$ $= \left(\frac{1}{2}\right)^{\frac{3.0 \times 24}{4.8}} \left(1.9 \times 10^5\right)$	C1
	= 5.8 Bq	A1

8(c)(i)	After a long enough time, the activity of the nucleus having the shorter half-life would have decreased to a negligible value compared to the activity of the nucleus having the longer half-life. Hence the total activity would be the same as the activity of the nucleus having the longer half-life.	A1
8(c)(ii)	From graph, time taken for activity of nucleus 1 to decrease from an initial value of 20 Bq to 10 Bq is 30 days, 10 Bq to 5 Bq is 30 days. Hence average half-life = 30 days	A1
8(c)(iii)	At $t = 0$ day, $A_{total} = A_1 + A_2$ $60 = 20 + A_2$ $A_2 = 40$ Bq	A 1
8(c)(iv)	activity A / Bq 40 Acos 10 20 40 60 80 100 time t / days	B1 • line passes through point P and y-intercept at 40 Bq • line must be labelled
8(c)(v)	From graph, time taken for activity of nucleus 2 to decrease from an initial value of 40 Bq to 20 Bq is 6 days, 20 Bq to 10 Bq is 6 days, 10 Bq to 5 Bq is 6 days. Hence average half-life is 6 days.	B1

Paper 3 – Longer Structured Questions

a Cusia	A STATE OF THE STA	Market
1(a)	$T = \sqrt{4\pi^2 \frac{0.500}{9.8}}$ = 1.41923 s	M1
	$\frac{\Delta T}{T} = \frac{1}{2} \frac{\Delta L}{L} + \frac{1}{2} \frac{\Delta g}{g}$	
	$= \frac{1}{2} \left(\frac{0.2}{50.0} \right) + \frac{1}{2} \left(\frac{0.1}{9.81} \right)$ $= 0.00710$	M1
	$\Delta T = 0.01008 \text{ s}$	M1
	$T = 1.42 \pm 0.01 \text{ s}$	A 1
(b)(i)	Assume that the uncertainty of each timing taken by each student is 0.2 s (typical timing for human error).	
	Then the uncertainty for each of these reading is: $\Delta T_{\rm first} = 0.2 \ {\rm s}$ $\Delta T_{\rm second} = \frac{0.2}{20} = 0.01 \ {\rm s}$	M1
	Since the <u>uncertainty of second set of data is estimated to be smaller</u> , it will have smaller scatter, hence <u>will be a more precise set of data</u> .	A1
(b)(ii)	The human error committed is a <u>systematic error</u> which <u>cannot be reduced by finding the average time</u> from multiple oscillations.	B1