
1 Use the substitution 
$$u = \sqrt{x}$$
 to find the exact value of  $\int_{1}^{9} \frac{1}{x(2\sqrt{x}-1)} dx$ . [4]

- 2 (i) Given that a is a positive constant, sketch the curve with equation  $y = \frac{x+a}{x-a}$ . State the equations of any asymptotes and the coordinates of the points where the curve crosses the axes. [3]
  - (ii) (a) Solve the inequality  $\left| \frac{x+a}{x-a} \right| > 1$ . [2]
    - (b) Solve the inequality  $\frac{|x|+a}{|x|-a} > 1$ . [1]
- 3 (i) By considering  $\frac{1}{(r-2)!} \frac{1}{r!}$  for  $r \ge 2$ , find an expression for  $\sum_{r=1}^{n} \frac{r^2 r 1}{r!}$  in terms of n. [3]
  - (ii) Give a reason why the series  $\sum_{r=1}^{\infty} \frac{r^2 r 1}{r!}$  converges and write down its value. [2]
  - (iii) Show that  $\sum_{r=1}^{n} \frac{r-2}{(r-1)!} < 1$  for all values of  $n \ge 1$ .

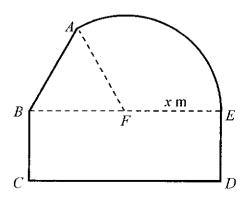
4



Water is poured at a rate of  $8 \text{ cm}^3$  per second into a conical container with base radius 8 cm. The semi-vertical angle of the cone is  $\theta$ , where  $\tan \theta = 0.4$ . At time t seconds after the start, the radius of the water surface is x cm (see diagram). Find the rate of increase of the depth of water when the depth is 10 cm.

[The volume of a cone of base radius r and height h is given by  $V = \frac{1}{3}\pi r^2 h$ .]

- With reference to the origin O, three points A, B and C have non-zero position vectors  $\mathbf{a}$ ,  $\mathbf{b}$  and  $\mathbf{c}$  respectively, such that  $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$ .
  - (i) Show that  $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c}$ .
  - (ii) If  $\angle AOB = 180^\circ$ , describe the geometrical relationship between the points A, B and C. [1] It is given instead that  $0^\circ < \angle AOB < 90^\circ$  and  $\angle BOC = 2\angle AOB$ .
  - (iii) By considering the magnitudes of the vectors on both sides of the equation in part (i), show that (a+2c).(a-2c)<0.


The points A, B and C lie in the plane p which has a normal parallel to the unit vector  $\mathbf{n}$ .

- (iv) Given that p has equation  $\mathbf{r}.\mathbf{n} = k$ , state the value of k. Justify your answer.
- A sequence  $u_1, u_2, u_3,...$  is such that  $u_{n+1} = Au_n + Bn + C$ , where A, B and C are constants,  $A \neq 0$  and  $n \geqslant 1$ . It is given that  $u_1 = 4$ .
  - (a) (i) If A = 1 and B = 0, find the value of  $\sum_{r=1}^{30} u_r$  in terms of C.
    - (ii) If instead the sequence is a geometric progression, state the values of B and C, and find the inequality satisfied by A such that  $u_{20} > 2000$ .
  - (b) Given instead that  $u_2 = 16$ ,  $u_3 = 70$  and  $u_4 = 334$ , find  $u_5$ . [3]
- 7 The function f is defined by  $f: x \mapsto \frac{1}{1+x^2}, x \in \mathbb{R}, 0 < x \le k$  where k is a real constant.
  - (i) Show that f has an inverse. [2]
  - (ii) Find  $f^{-1}(x)$  and state the domain of  $f^{-1}$ . [3]

It is further given that  $k < \frac{1}{1+k^2}$ .

- (iii) Sketch the graph of  $y = f^{-1}(x)$ . Your sketch should indicate the position of the graph in relation to the line y = x.
- (iv) Deduce the number of solutions of the equation  $f(x) = f^{-1}(x)$ .
- 8 (a) The complex number w is given by  $w = re^{i\theta}$ , where r > 0 and  $0 \le \theta \le \frac{\pi}{2}$ .
  - (i) Given that  $z = (1 i\sqrt{3})w$ , find |z| in terms of r and arg(z) in terms of  $\theta$ . [2]
  - (ii) Given that  $\left(\frac{z^2}{z^2}\right)^2 = 36i$ , find r and all possible values of  $\theta$ . [5]
  - (b) The equation  $z^3 + pz^2 + 17z 13 = 0$ , where p is real, has a root z = 2 + qi where q is a real positive constant. Find the values of p and q, showing your working.





The diagram above shows a plan view of a livestock enclosure, ABCDEA, consisting of a rectangle BCDE joined to an equilateral triangle BFA and a sector of a circle with radius x metres and centre F. The points B, F and E lie on a straight line with FE = x metres.

- (i) Find the exact area of sector FEA, giving your answer in terms of x and in a simplified form. [2] To ensure sufficient living space is given to the livestock, it is desired to have the area of the enclosure as  $1000 \text{ m}^2$ . At the same time, to save on the cost required for fencing the enclosure, P metres, should be made as small as possible.
- (ii) Show that

$$P = \frac{1000}{x} + \frac{x}{12} \left( 4\pi + 36 - 3\sqrt{3} \right).$$
 [4]

- (iii) Use calculus to find the minimum value of *P*, giving your answer to one decimal place. Justify, by further differentiation, that the value of *P* you have found is a minimum.
- 10 (i) Find  $\int \frac{1}{2+x-x^2} dx$ , given that  $0 \le x \le \frac{1}{2}$ . [3]
  - (ii) The mass, x grams, of a substance, X, present in a chemical reaction at time t minutes satisfies the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k(2 + x - x^2)$$

where  $0 \le x \le \frac{1}{2}$  and k is a constant. It is given that  $x = \frac{1}{2}$  and  $\frac{dx}{dt} = -\frac{1}{9}$  when t = 0

- (a) Find t in terms of x.
- (b) Find the exact time for there to be none of the substance X present in the chemical reaction.

The mass, y grams, of another substance, Y, present in the chemical reaction at time t minutes satisfies the differential equation  $\frac{d^2y}{dt^2} = \frac{1}{t+1}$ . It is given that y = 0 and  $\frac{dy}{dt} = 0$  when t = 0

(c) Find y in terms of t. [5]

11 A curve C has parametric equations

$$x = 3\cos t - \cos 3t$$
,  $y = 3\sin t - \sin 3t$ ,

where  $0 \le t \le \frac{\pi}{2}$ . The line *l* is the normal to *C* at the point where  $t = \frac{\pi}{3}$ .

(i) Find the equation of *l*.

- (ii) On the same diagram, sketch C and l. [2]
- (iii) Find the exact area of the region bounded by C, l and the y-axis. [9]

www.testpapersfree.com

| '     | $u = \sqrt{x}$                                                                        |
|-------|---------------------------------------------------------------------------------------|
|       | $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2\sqrt{x}}$                               |
|       |                                                                                       |
|       | when $x = 9$ , $u = 3$                                                                |
|       | when $x = 1$ , $u = 1$                                                                |
|       | $\int_{0}^{9}$ $\int_{0}^{3}$ $\int_{0}^{3}$                                          |
|       | $\int_{1}^{9} \frac{1}{x(2\sqrt{x}-1)} dx = \int_{1}^{3} \frac{1}{u^{2}(2u-1)} 2u du$ |
|       | $=\int_1^3 \frac{2}{u(2u-1)}  \mathrm{d}u$                                            |
|       |                                                                                       |
|       | $= \int_{1}^{3} \frac{-2}{u} + \frac{4}{2u - 1}  \mathrm{d}u$                         |
|       |                                                                                       |
|       | $= \left[ -2 \ln  u  + 2 \ln  2u - 1  \right]_{1}^{3}$                                |
|       | $=-2\ln 3+2\ln 5$                                                                     |
| -     |                                                                                       |
|       | $=2\ln\left(\frac{5}{3}\right)$                                                       |
|       |                                                                                       |
| 2(i)  | <i>y</i>                                                                              |
|       |                                                                                       |
|       |                                                                                       |
|       | v=1                                                                                   |
|       |                                                                                       |
|       | (-a,0) x                                                                              |
|       | (0,-1)                                                                                |
|       |                                                                                       |
|       | x=a                                                                                   |
| 2(ii) | et.                                                                                   |
| (a)   | From the grant                                                                        |
|       | From the graph, $0 < x < a \text{ or } x > a$                                         |
|       | $y=1 \qquad (0,1)$                                                                    |
|       |                                                                                       |
|       | $(-a,0) \qquad \qquad x = a \qquad \qquad x$                                          |
|       |                                                                                       |
| 2(ii) |                                                                                       |
| (b)   |                                                                                       |
|       | From the graph,                                                                       |
|       | x < -a  or  x > a                                                                     |
|       |                                                                                       |
|       | X                                                                                     |
|       |                                                                                       |
|       | (0,-1)                                                                                |
|       | x=-a                                                                                  |
|       | x = a                                                                                 |
|       |                                                                                       |

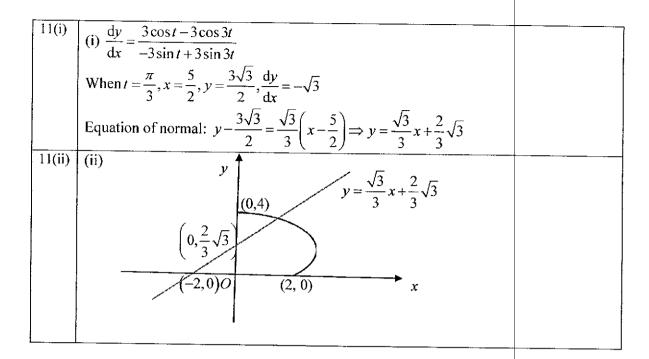
| 3(i)   | 1 1(1) 1 2                                                                                                                     |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------|--|
|        | $\frac{1}{(r-2)!} - \frac{1}{r!} = \frac{r(r-1)-1}{r!} = \frac{r^2 - r - 1}{r!}$                                               |  |
|        |                                                                                                                                |  |
|        | $\sum_{r=1}^{n} \frac{r^2 - r - 1}{r!} = \sum_{r=2}^{n} \left( \frac{1}{(r-2)!} - \frac{1}{r!} \right) + \frac{1 - 1 - 1}{1!}$ |  |
|        | $= \left(\frac{1}{0!} - \frac{1}{2!}\right)$                                                                                   |  |
|        | $-\left(\overline{0!}-\overline{\cancel{2}!}\right)$                                                                           |  |
|        | $+\frac{1}{1!}-\frac{1}{3!}$                                                                                                   |  |
|        |                                                                                                                                |  |
|        | $+\frac{1}{2!}-\frac{1}{4!}$                                                                                                   |  |
|        | +                                                                                                                              |  |
|        | $+\frac{1}{(\nu-4)!}-\frac{1}{(\nu-2)!}$                                                                                       |  |
|        |                                                                                                                                |  |
|        | $+\frac{1}{(n-3)!}-\frac{1}{(n-1)!}$                                                                                           |  |
| į      | $+\frac{1}{(n-2)!}-\frac{1}{n!}$ -1                                                                                            |  |
| į      | $=1+1-\frac{1}{(n-1)!}-\frac{1}{n!}-1$                                                                                         |  |
|        | $=1-\frac{1}{(n-1)!}-\frac{1}{n!}$                                                                                             |  |
| 3(ii)  | As $n \to \infty$ , $-\frac{1}{(n-1)!} \to 0$ and $-\frac{1}{n!} \to 0$                                                        |  |
|        | $\therefore \sum_{r=1}^{n} \frac{r^2 - r - 1}{r!} \to 1, \text{ a finite value}$                                               |  |
|        | $\therefore \sum_{r=1}^{\infty} \frac{r^2 - r - 1}{r!} \text{ converges}$                                                      |  |
|        | sum to infinity = $\sum_{r=1}^{\infty} \frac{r^2 - r - 1}{r!} = 1$                                                             |  |
| 3(iii) | $\sum_{r=1}^{n} \frac{r-2}{(r-1)!} = \sum_{r=1}^{n} \frac{r^2 - 2r}{r!} = \sum_{r=1}^{n} \frac{r^2 - r - r}{r!}$               |  |
|        | $<\sum_{r=1}^{n}\frac{r^2-r-1}{r!}\left(\because\frac{r}{r!}>\frac{1}{r!}\text{ for }r>1\right)$                               |  |
|        | $=1-\frac{1}{(n-1)!}-\frac{1}{n!}<1$                                                                                           |  |
|        |                                                                                                                                |  |
|        |                                                                                                                                |  |

#### Note to tutors:

In recent years, A level phrasing of 3(ii) is "Give a reason why the series converges and write down the value of the sum to infinity". With such phrasing, Cambridge expects students to write "sum to infinity = \_\_\_\_" (See report below).

N07/II/2

| 4     | Let the volume of water in the cone be $V \text{ cm}^3$ at time $t$ seconds, when the depth is $y \text{ cm}$ .         |     |
|-------|-------------------------------------------------------------------------------------------------------------------------|-----|
|       | 20 20 - y                                                                                                               |     |
|       | $\tan \theta = \frac{8}{h} \Rightarrow h = 20$                                                                          |     |
|       | $V = \frac{1}{3}\pi (8^2)(20) - \frac{1}{3}\pi (x^2)(20 - y),$                                                          |     |
|       | Since $\tan \theta = \frac{x}{20 - y}$ ,                                                                                |     |
|       | $V = \frac{1280\pi}{3} - \frac{1}{3}\pi \left[0.4(20 - y)\right]^{2} (20 - y)$                                          |     |
|       | $=\frac{1280\pi}{3}-\frac{0.16}{3}\pi(20-y)^3$                                                                          |     |
|       | $\frac{\mathrm{d}}{\mathrm{d}t}:  \frac{\mathrm{d}V}{\mathrm{d}t} = 0.16\pi (20 - y)^2 \frac{\mathrm{d}y}{\mathrm{d}t}$ |     |
|       | When $y = 10$ , $\frac{\mathrm{d}V}{\mathrm{d}t} = 8$ ,                                                                 |     |
|       | $8 = 0.16\pi \left(10\right)^2 \frac{\mathrm{d}y}{\mathrm{d}t}$                                                         |     |
|       | $\frac{\mathrm{d}y}{\mathrm{d}t} = 0.159$                                                                               |     |
|       | Depth of water increases at 0.159 cm per second.                                                                        |     |
| 5(i)  | $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$                                                                              |     |
| ,     | $(a+b+c)\times b = 0\times b$                                                                                           |     |
|       | $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{b} + \mathbf{c} \times \mathbf{b} = 0$                        | 9.9 |
|       | $\mathbf{a} \times \mathbf{b} + 0 + \mathbf{c} \times \mathbf{b} = 0$                                                   |     |
|       | $\mathbf{a} \times \mathbf{b} = -(\mathbf{c} \times \mathbf{b})$                                                        |     |
|       | $=\mathbf{b}\times\mathbf{c}$                                                                                           |     |
| 5(ii) | A, B and C are collinear (lie on a straight line).                                                                      |     |


| 5(iii)   | $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c}$ (from part (i))                                      |          |
|----------|--------------------------------------------------------------------------------------------------------------------|----------|
|          | $ \mathbf{a}  \mathbf{b} \sin \angle AOB =  \mathbf{b}  \mathbf{c} \sin \angle BOC$                                |          |
|          | $ \mathbf{a} \sin \angle AOB =  \mathbf{c} \sin(2\angle AOB)$ (since $ \mathbf{b}  \neq 0$ )                       |          |
|          | $=2 \mathbf{c} \sin\angle AOB\cos\angle AOB$                                                                       |          |
|          | $ \mathbf{a}  = 2 \mathbf{c} \cos \angle AOB \text{ (since } \sin \angle AOB \neq 0)$                              |          |
|          | $0 =  \mathbf{a} ^2 - 4 \mathbf{c} ^2 \cos^2 \angle AOB$                                                           |          |
|          | $ \mathbf{a} ^2 = 4 \mathbf{c} ^2 \cos^2 \angle AOB$                                                               |          |
|          | $(\mathbf{a}+2\mathbf{c}).(\mathbf{a}-2\mathbf{c})$                                                                | <u>.</u> |
|          | = a.a + (2c).a - a.(2c) + (2c).(2c)                                                                                |          |
|          | $= \mathbf{a} ^2-4 \mathbf{c} ^2$                                                                                  |          |
|          | $=4 \mathbf{c} ^2\cos^2\angle AOB-4 \mathbf{c} ^2$                                                                 |          |
|          | $=4 \mathbf{e} ^2(\cos^2\angle AOB-1)$                                                                             |          |
|          | $= 4  \mathbf{c} ^2 (-\sin^2 \angle AOB) < 0 \ (\because  \mathbf{c} ^2 \ge 0 \text{ and } \sin^2 \angle AOB > 0)$ |          |
| 5(iv)    | k = 0 since the origin O is in the plane p.                                                                        |          |
|          |                                                                                                                    |          |
| 6(a)     | $A = 1, B = 0 \implies u_{n+1} = u_n + C \implies AP$                                                              |          |
| (i)      | $\sum_{r=11}^{30} u_r = \frac{20}{2} (u_{11} + u_{30})$                                                            |          |
| <u>.</u> | =10(4+10C+4+29C)                                                                                                   |          |
|          | =80+390C                                                                                                           |          |
| (ii)     | $GP \Rightarrow u_{n+1} = Au_n$ for all values of $n : B = 0, C = 0$                                               |          |
|          | $U_{20} > 2000 \implies 4(A)^{19} > 2000$                                                                          |          |
|          | $\Rightarrow A > 500^{\frac{1}{9}}$                                                                                |          |
|          | $\Rightarrow A > 1.39$                                                                                             |          |
| (b)      | $u_{n+1} = Au_n + Bn + C$                                                                                          |          |
|          | n=1: 16=4A+B+C                                                                                                     |          |
|          | n=2: 70=16A+2B+C                                                                                                   |          |
|          | n=3: 334=70A+3B+C                                                                                                  |          |
|          | From GC, $A = 5$ , $B = -6$ , $C = 2$                                                                              |          |
|          | $\therefore u_5 = 5u_4 - 6(4) + 2 = 1648$                                                                          |          |
| L        |                                                                                                                    |          |

| 7(:)       |                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7(i)       | (0,1) $\left(k, \frac{k}{1+k^2}\right)$ Every horizontal line $y = k$ cuts the graph of $y = f(x)$ at                                                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | most once. Hence f is one-one and the inverse of f exists.                                                                                                 | + |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                                                                                                                                            | ļ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 (ii)     | $y = f(x) = \frac{1}{1+x^2}$ $\frac{1}{y} = 1+x^2$ $x^2 = \frac{1}{y} - 1$                                                                                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | $\frac{1}{v} = 1 + x^2$                                                                                                                                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | $x^2 = \frac{1}{12} - 1$                                                                                                                                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | <i>y</i>                                                                                                                                                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | $x = \sqrt{\frac{1}{y} - 1}$ : reject $-\sqrt{\frac{1}{y} - 1}$ since $x > 0$                                                                              |   | , i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | $f^{-1}(x) = \sqrt{\frac{1}{x} - 1}$                                                                                                                       |   | , the state of the |
| !<br> <br> | domain of $f^{-1} = \left[\frac{1}{1+k^2},1\right)$                                                                                                        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 (iii)    |                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | $y = x$ $(0,1) \qquad y = f(x)$ $\begin{pmatrix} x, \frac{1}{1+k^2} \end{pmatrix} \qquad \begin{pmatrix} \frac{1}{1+k^2}, k \end{pmatrix}$ $y = f^{-1}(x)$ |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | (k,0)                                                                                                                                                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7(iv)      | Since $y = f^{-1}(x)$ do not intersect the line $y = x$ , it will not                                                                                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ]          | intersect $y = f(x)$ too, hence no solutions for                                                                                                           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | $f(x) = f^{-1}(x).$                                                                                                                                        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Alternative:                                                                                                                                               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | Since the domains of f and f <sup>-1</sup> are different, there is no                                                                                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | solution for $f(x) = f^{-1}(x)$                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 8(a)<br>(i)  | $arg(z) = arg(1 - i\sqrt{3}) + arg(w)$ $= -\frac{\pi}{3} + \theta$ $ z  =  1 - i\sqrt{3}  w  $ $= 2r$                                                                                                                                                                       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8(a)<br>(ii) | $\arg\left(\frac{z^2}{z^*}\right)^2 = 4\arg(z) - 2\arg(z^*)$ $= 4\arg(z) + 2\arg(z)$ $= 4\arg(z)$                                                                                                                                                                           |
|              | $= 6\theta + 2k\pi  k \in \mathbb{Z} $ $\left  \left( \frac{z^2}{z^*} \right)^2 \right  = \frac{ z ^4}{ z ^2}$                                                                                                                                                              |
|              | $= 4r^{2}$ Hence, $4r^{2} = 36 \Rightarrow r = 3$ . $6\theta + 2k\pi = \frac{\pi}{2}$                                                                                                                                                                                       |
| è            | $\theta = \frac{\pi - 4k\pi}{12}$ For $0 \le \theta \le \frac{\pi}{2}$ , we have $k = -1$ , 0, giving us $\theta = \frac{5\pi}{12}$ , $\frac{\pi}{12}$                                                                                                                      |
| 8(b)         | Since $p$ is a real value, by conjugate root theorem, $2-qi$ is also a root.<br>$(z-(2+qi))(z-(2-qi)) = z^2-4z+4+q^2$ Let the third root be $v$ . We know that $v$ is real.<br>$z^3 + pz^2 + 17z - 13 = (z^2 - 4z + 4 + q^2)(z-v)$ Coefficient of $z^0$ : $-(4+q^2)v = -13$ |
|              | Coefficient of z: $4v + 4 + q^2 = 17 \Rightarrow q^2 = 13 - 4v$ (2)<br>Sub (2) into (1), we have<br>(17 - 4v)v = 13<br>$4v^2 - 17v + 13 = 0$                                                                                                                                |
|              | $(4v-13)(v-1) = 0$ $v = \frac{13}{4} \text{ or } v = 1$ However, if $v = \frac{13}{4}$ , sub into (2), gives us $q = 0$ . Hence, $v \neq \frac{13}{4}$ and $v = 1$ .                                                                                                        |
|              | $z^{3} + pz^{2} + 17z - 13 = (z^{2} - 4z + 4 + q^{2})(z - 1)$ $z^{3} + pz^{2} + 17z - 13 = z^{3} - 5z^{2} + (q^{2} + 4)z - 4 - q^{2}$                                                                                                                                       |
| 9 (i)        | Hence, $p = -5$ and $q = 3$ .                                                                                                                                                                                                                                               |
| - (9         | Angle $AFE = 180^{\circ} - 60^{\circ} = 120^{\circ}$<br>Area of sector $FEA = \frac{120}{360}\pi x^2 = \frac{1}{3}\pi x^2$                                                                                                                                                  |

| 9 (ii) total area = $\frac{1}{2}x^2 \sin 60^\circ + BC(2x) + \frac{1}{3}\pi x^2$<br>$2x(BC) = 1000 - \frac{\sqrt{3}}{4}x^2 - \frac{1}{3}\pi x^2$           |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $2x(BC) = 1000 - \frac{\sqrt{3}}{4}x^2 - \frac{1}{3}\pi x^2$                                                                                               |   |
|                                                                                                                                                            |   |
| $BC = \frac{500}{x} - \frac{\sqrt{3}}{8}x - \frac{\pi}{6}x$                                                                                                | i |
| $P = x + 2\left(\frac{500}{x} - \frac{\sqrt{3}}{8}x - \frac{\pi}{6}x\right) + 2x + \frac{1}{3}(2\pi x)$                                                    |   |
| $= \frac{1000}{x} + \frac{x}{12} \left( 4\pi + 36 - 3\sqrt{3} \right)$                                                                                     |   |
| $\frac{9 \text{ (iii)}}{dx} = \frac{-1000}{x^2} + \frac{1}{12} \left( 36 - 3\sqrt{3} + 4\pi \right)$                                                       |   |
| $\frac{\mathrm{d}P}{\mathrm{d}x} = 0 \implies \frac{1000}{x^2} = \frac{1}{12} \left( 36 - 3\sqrt{3} + 4\pi \right)$                                        |   |
| x = 16.634                                                                                                                                                 |   |
| P = 120.2                                                                                                                                                  |   |
|                                                                                                                                                            |   |
| $d^2P = 2000$                                                                                                                                              |   |
| $\frac{\mathrm{d}^2 P}{\mathrm{d}x^2} = \frac{2000}{x^3}$                                                                                                  |   |
|                                                                                                                                                            |   |
| When $x = 16.634$ , $\frac{d^2 P}{dx^2} = \frac{2000}{16.634^3} > 0$                                                                                       | İ |
| $\therefore$ minimum $P = 120.2$                                                                                                                           |   |
| 10(1)                                                                                                                                                      | - |
| $\int \frac{10(i)}{2+x-x^2}  \mathrm{d}x$                                                                                                                  |   |
|                                                                                                                                                            | - |
| $=\int \frac{1}{\frac{9}{4} - \left(x - \frac{1}{2}\right)^2}  \mathrm{d}x$                                                                                |   |
| $= \frac{1}{2\left(\frac{3}{2}\right)} \ln \left  \frac{\frac{3}{2} + \left(x - \frac{1}{2}\right)}{\frac{3}{2} \left(x - \frac{1}{2}\right)} \right  + C$ |   |
|                                                                                                                                                            |   |
| $= \frac{1}{3} \ln \left( \frac{1+x}{2-x} \right) + C  \because x \le \frac{1}{2}$                                                                         |   |

$$\begin{aligned}
 & \text{Given } x = \frac{1}{2}, \quad \frac{dx}{dt} = -\frac{1}{4} \\
 & \therefore -\frac{1}{9} = k \left( 2 + \frac{1}{2} - \frac{1}{4} \right) \\
 & \Rightarrow \frac{9}{4}k = -\frac{1}{4} \Rightarrow k = -\frac{1}{9} \\
 & \frac{dx}{dt} = -\frac{1}{9}(2 + x - x^2) \\
 & \int \frac{1}{2 + x - x^2} dx = \int -\frac{1}{9} dt \\
 & -\frac{1}{9}t = \frac{1}{3} \ln \left( \frac{1 + x}{2 - x} \right) + C \\
 & t = -3 \ln \left( \frac{1 + x}{2 - x} \right) + C \\
 & \text{When } t = 0, \quad x = \frac{1}{2}, \quad \therefore 0 = -3 \ln 1 + C \Rightarrow C = 0 \\
 & t = -3 \ln \left( \frac{1 + x}{2 - x} \right) + C \\
 & \text{When } t = 0, \quad t = -3 \ln \left( \frac{1}{2} \right) = 3 \ln 2 \\
 & \text{10(b)} \\
 & \text{(iv)} & \frac{d^2y}{dt^2} = \frac{1}{t + 1} \\
 & \frac{dy}{dt} = \ln|t + 1| + C \\
 & = \ln(t + 1) + C \quad \because t + 1 \ge 1 > 0 \\
 & \text{When } t = 0, \quad \frac{dy}{dt} = 0 \Rightarrow 0 = \ln(0 + 1) + C \Rightarrow C = 0 \\
 & \frac{dy}{dt} = \ln(t + 1) \\
 & y = \int \ln(t + 1) dt \\
 & = t \ln(t + 1) - \int \frac{t}{t + 1} dt \\
 & = t \ln(t + 1) - \int 1 - \frac{1}{t + 1} dt \\
 & = t \ln(t + 1) - \int 1 - \frac{1}{t + 1} dt \\
 & = t \ln(t + 1) - t + \ln(t + 1) + D \\
 & \text{When } t = 0, \quad y = 1, \quad D = 0 \\
 & \text{Hence, } y = (t + 1) \ln(t + 1) - t \end{aligned}$$



[iii) Roint of intersection 
$$\left(\frac{5}{2}, \frac{3\sqrt{3}}{2}\right)$$
Area
$$= \int_{3^{2}}^{3^{2}} y \, dx - \text{area of trapizum}$$

$$= \int_{3^{2}}^{3^{2}} (3\sin t - \sin(3t)) 3(-\sin t + \sin 3t) \, dt - \frac{1}{2} \left(\frac{5}{2}\right) \left(\frac{2}{3}\sqrt{3} + \frac{3}{2}\sqrt{3}\right)$$

$$= 3\int_{3^{2}}^{3^{2}} \left(-3\sin^{2} t + 4\sin t \sin(3t) - \sin^{2}(3t)\right) \, dt - \frac{1}{2} \left(\frac{5}{2}\right) \left(\frac{13}{6}\sqrt{3}\right)$$

$$= 3\int_{3^{2}}^{3^{2}} \left(3\left(\frac{\cos 2t - 1}{2}\right) - 2\left(\cos 4t - \cos 2t\right) + \frac{\cos 6t - 1}{2}\right) \, dt - \frac{65}{24}\sqrt{3}$$

$$= 3\int_{3^{2}}^{3^{2}} \left(-2 + \frac{7}{2}\cos 2t - 2\cos 4t + \frac{\cos 6t}{2}\right) \, dt - \frac{65}{24}\sqrt{3}$$

$$= 3\left[-2t + \frac{7}{4}\sin 2t - \frac{2\sin 4t}{4} + \frac{\sin 6t}{12}\right]_{3^{2}}^{3^{2}} - \frac{65}{24}\sqrt{3}$$

$$= 3\left[-\frac{2\pi}{3} + \frac{7}{4}\left(\frac{\sqrt{3}}{2}\right) + \frac{\sqrt{3}}{4} - (-\pi)\right] - \frac{65}{24}\sqrt{3}$$

$$= \pi + \frac{2}{3}\sqrt{3}$$
or

Area
$$= \int_{3^{2}}^{3^{2}} (3\cos t - \cos(3t)) 3(\cos t - \cos 3t) \, dt + \frac{1}{2}\left(\frac{5}{2}\right)\left(\frac{3}{3}\sqrt{3} - \frac{2}{3}\sqrt{3}\right)$$

$$= 3\int_{3^{2}}^{3^{2}} (3\cos^{2} t - 4\cos t\cos(3t) + 3\cos^{2}(3t)\right) \, dt + \frac{25}{24}\sqrt{3}$$

$$= 3\int_{3^{2}}^{3^{2}} \left(3\left(\frac{\cos 2t + 1}{2}\right) - 2\left(\cos 4t + \cos 2t\right) + \frac{\cos 6t + 1}{2}\right) \, dt + \frac{25}{24}\sqrt{3}$$

$$= 3\int_{3^{2}}^{3^{2}} \left(2 - \frac{1}{2}\cos 2t - 2\cos 4t + \frac{\cos 6t}{2}\right) \, dt + \frac{25}{24}\sqrt{3}$$

$$= 3\left[2t - \frac{1}{4}\sin 2t - \frac{2\sin 4t}{4} + \frac{\sin 6t}{12}\right]_{3^{2}}^{3^{2}} + \frac{25}{24}\sqrt{3}$$

$$= 3\left[\pi - \left(\frac{2\pi}{3} - \frac{1}{4}\left(\frac{\sqrt{3}}{2}\right) + \frac{\sqrt{3}}{4}\right)\right] + \frac{25}{24}\sqrt{3}$$

$$= \pi + \frac{2}{3}\sqrt{3}$$

# Section A: Pure Mathematics [44 marks]

1 The function f is defined by

$$f: x \mapsto \ln(2x+1)+5, \quad x \in \mathbb{R}, x > -\frac{1}{2}.$$

- (i) Sketch on the same diagram the graphs of y = f(x) and  $y = \frac{1}{f(x)}$ , giving the equations of any asymptotes and the coordinates of any points where the graphs cross the axes. [6]
- (ii) Describe a sequence of three transformations which would transform the curve  $y = \ln(-2x)$  onto the curve y = f(x).
- A curve C has equation  $y^2 + k(x-3)^2 = 4$ , where k is a real constant.
  - (a) Sketch, on separate clearly labelled diagrams, the graphs of C for both k > 0 and k < 0. State, in terms of k, the coordinates of any points where the curves cross the x-axis, the equations of any asymptotes and the coordinates of any points of intersection of the asymptotes and stationary points. [5]
  - **(b)** Assume now that 0 < k < 1.
    - (i) The region S is bounded by C and the lines x = 3 and x = 4. Find the volume of the solid of revolution formed when S is rotated about the x-axis through 180°, giving your answer in terms of k. [3]

The curve C is stretched with scale factor  $\frac{1}{2}$  parallel to the y-axis to form the curve D.

- (ii) Without integration, state the volume of the solid of revolution formed when the region bounded by D and the lines x = 3 and x = 4 is rotated about the x-axis through 180°, giving your answer in terms of k.
- 3 (a) Expand  $\frac{4+x^2}{\sqrt{4-x}}$  in ascending powers of x, up to and including the term in  $x^2$ . [3]

State the set of values of x for which the expansion is valid. [1]

**(b)** It is given that  $y = \ln(1 + \sin x)$ .

(i) Show that  $(1+\sin x)\frac{d^2y}{dx^2} + (\cos x)\frac{dy}{dx} = -\sin x$ . [2]

- (ii) By further differentiation of the result in part (i), find the Maclaurin series for y, up to and including the term in  $x^3$ .
- (iii) Hence deduce the Maclaurin series for  $\ln\left(\frac{1-\sin x}{2}\right)$ , up to and including the term in  $x^3$ . [2]

4 The planes  $p_1$  and  $p_2$  have equations  $\mathbf{r} = \begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$  and 4x + y + 3z = 1 respectively, where

 $\lambda$  and  $\mu$  are parameters. These two planes meet in the line l.

- (i) Show that  $p_1$  is perpendicular to  $p_2$ . [2]
- (ii) Explain why l passes through the point (1,0,-1) and find a vector equation for l. [3]
- (iii) The points A(0,3,-5) and B(2,2,-3) lie in  $p_1$  and  $p_2$  respectively and the point B' is the reflection of point B in the line I. Find the exact area of triangle ABB'.

A third plane  $p_3$  has equation  $\mathbf{r} \cdot \begin{pmatrix} a \\ 3 \\ 1 \end{pmatrix} = -9$ , where a is a constant. The point Q lies in all three planes  $p_1$ ,

 $p_3$  and  $p_3$ .

- (iv) Explain why Q lies on the line l.
- (v) Hence or otherwise, find the coordinates of Q, showing your working. [3]

#### Section B: Statistics [56 marks]

- 5 Find the number of ways in which all twelve letters of the word MISSPELLINGS can be arranged if
  - (i) both the I's are placed at the beginning and both the L's are placed at the end,
  - (ii) between any two S's, there must be at least 4 other letters. [3]

A group of 8 letters is randomly selected from the letters of the word MISSPELLINGS. Find the probability that all 8 letters are distinct.

6 A scientist is interested to study the behaviour of raccoons.

*N* boxes are placed in a room with exactly 1 of them containing food. Alex, the raccoon, will randomly open one of the boxes to see if it contains food. It will stop once it finds food, else, it will randomly open another box until it finds food. You may assume that Alex is trained such that it will not attempt to open the same box more than once. Let *X* be the number of boxes that Alex opens.

- (i) If N = 3, determine the probability distribution of X. [2]
- (ii) State E(X) and show that  $Var(X) = \frac{(N-1)(N+1)}{12}$ . [4] [You may use the result  $\sum_{n=1}^{\infty} r^2 = \frac{n(n+1)(2n+1)}{6}$ .]

For events A, B and C it is given that P(A) = 0.8, P(B) = 0.4, P(C) = c and  $P(A \cup B) = 0.95$ .

- (i) Find  $P(A \cap B)$  and determine with reason, if events A and B are independent. [2]
- (ii) State the range of values of c which necessarily implies that events A and C are not mutually exclusive.

  [1]

It is now given that  $P(C) = P(C \mid A) = 0.45$ .

- (iii) Find  $P(A \cap C)$  and state the greatest and least possible values of  $P(A' \cap B \cap C)$ . [3]
- 8 (a) The random variable Y has the distribution B(n, p) with mean 2.75. Given that P(Y < 2) = 0.13122, find the value of n and the value of p.
  - (b) On average a% of the residents in a city use the bicycle-sharing platform, ShareBike. A sample of n residents is taken and the random variable X denotes the number of residents in the sample who use ShareBike.
    - (i) State, in context, two assumptions needed for X to be well modelled by a binomial distribution.

Assume now that X has a binomial distribution.

- (ii) Given that n = 45 and a = 8, find the probability that at least 9 but not more than 13 residents use ShareBike. [2]
- (iii) It is given instead that n=12 and the modal number of residents who use ShareBike in the sample is 2. Use this information to find exactly the range of values that a can take. [4]
- A factory supplies beans in small cans. The mass of one can of beans is denoted by X grams. A random sample of 40 cans of beans was taken and the masses are summarised as follows.

$$\sum (x-425) = -136$$
 and  $\sum (x-425)^2 = 4927.5$ 

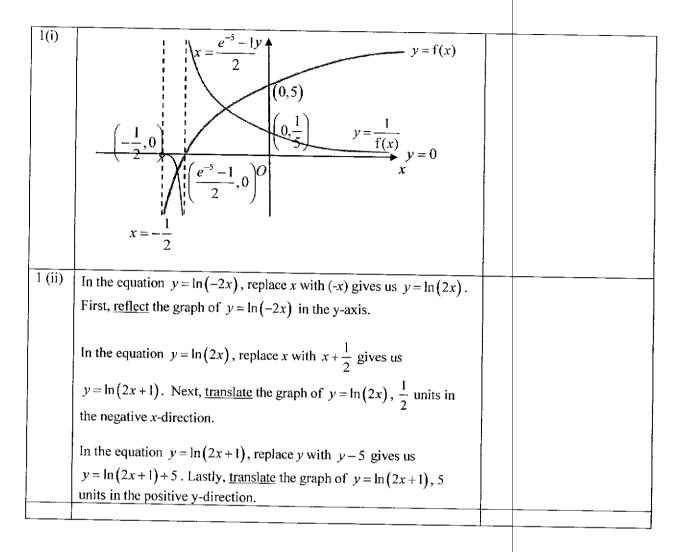
- (i) Calculate unbiased estimates of the population mean and variance of the mass of cans of beans. [2]
- (ii) Test, at the 5% significance level, the claim that the mean mass of a can of beans is 425 grams. You should state your hypotheses and define any symbols you use.
- (iii) State, giving a reason, whether any assumptions about the population are needed in order for the test to be valid.
- (iv) Explain, in the context of the question, the meaning of 'at the 5% significance level'.

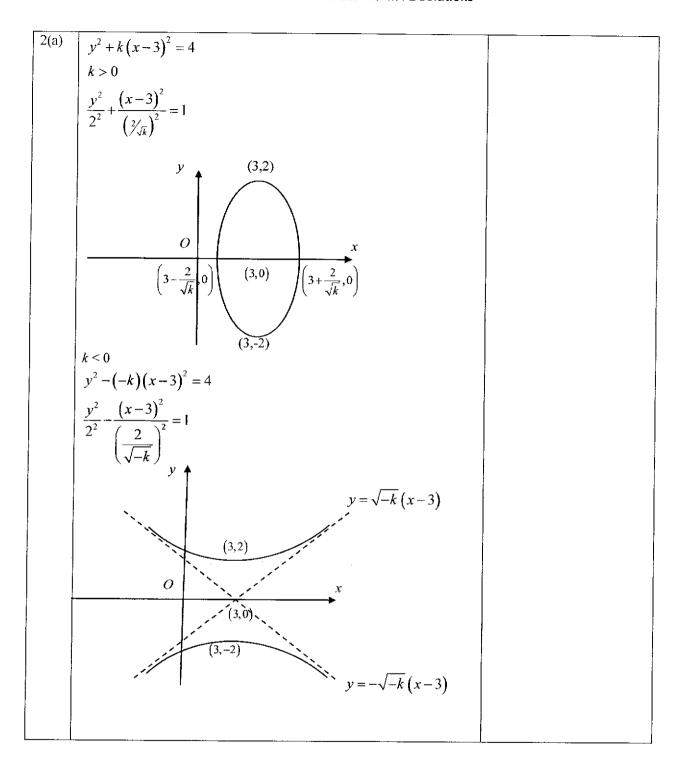
The factory also supplies frozen corn in packets. The mass of a randomly chosen packet of frozen corn has a normal distribution with standard deviation 12 grams. The factory claims that the mean mass of the packets of frozen corn is 380 grams. However, a random sample of 15 packets of frozen corn is taken and the mean mass of the sample is found to be 375 grams.

(v) Given that a one-tail test at the  $\alpha$  % significance level concludes that there is reject the factory's claim, find the set of possible values of  $\alpha$ .

# 10 In this question you should state clearly all the distributions that you use, together with the values of the appropriate parameters.

A certain bakery bakes two types of cookies; butter cookies and chocolate cookies. The masses of butter cookies have the distribution  $N(15,0.4^2)$  and the masses of chocolate cookies have the distribution  $N(20,1.2^2)$ . The units for mass are grams.


- (i) Find the probability that the mass of a randomly chosen butter cookie is more than 15.5 grams. [1]
- (ii) 10 butter cookies are randomly chosen. Find the probability that at least 4 of them each has mass more than 15.5 grams. [3]


The cookies are sold by weight. Butter cookies cost \$6 per 100 grams and chocolate cookies cost \$7.50 per 100 grams.

- (iii) Miss Lee bought 12 butter cookies and 12 chocolate cookies for her family. Find the probability that she paid less than \$29.
- (iv) State an assumption needed for your calculations in part (iii).

The waiting time, T minutes, before a customer is served at the bakery has a mean of 16 minutes and a standard deviation of 9 minutes.

- (v) Give a reason why a normal distribution, with this mean and standard deviation, would not give a good approximation to the distribution of T.
- (vi) The waiting times of n randomly chosen customers at the bakery are taken, where n > 30. Given that the probability that the average waiting time of these n customers is between 16 minutes and 18 minutes is more than 0.48, find the least value of n.





| (b)  | Volume                                                                       |  |
|------|------------------------------------------------------------------------------|--|
| (i)  | $=\pi\int_3^4\left[4-k\left(x-3\right)^2\right]\mathrm{d}x$                  |  |
|      | $=\pi\bigg[4x-\frac{k}{3}(x-3)^3\bigg]_3^4$                                  |  |
|      | $=\pi\left(16-\frac{k}{3}-12\right)$                                         |  |
|      | $=\pi\bigg(4-\frac{k}{3}\bigg)$                                              |  |
| (ii) | Volume                                                                       |  |
|      | $= \int_{3}^{4} \left(\frac{1}{2}\right)^{2} \left[4 - k(x-3)^{2}\right] dx$ |  |
|      | $= \left(\frac{1}{2}\right)^2 \int_3^4 \left[4 - k(x - 3)^2\right] dx$       |  |
|      | $= \left(\frac{1}{2}\right)^2 \pi \left(4 - \frac{k}{3}\right)$              |  |
|      | $=\frac{\pi}{4}\left(4-\frac{k}{3}\right)$                                   |  |
|      |                                                                              |  |

| 3 (a)       | $\frac{4+x^2}{\sqrt{4-x}} = (4+x^2)(4-x)^{-\frac{1}{2}}$                                                                                                                                                                     |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             | $\int \sqrt{4-x} - (4+x)(4-x)^2$                                                                                                                                                                                             |  |
|             | $=4^{\frac{1}{2}}\left(4+x^2\right)\left(1-\frac{x}{4}\right)^{\frac{1}{2}}$                                                                                                                                                 |  |
|             | $= \frac{1}{2} \left( 4 + x^2 \right) \left( 1 + \left( -\frac{1}{2} \right) \left( -\frac{x}{4} \right) + \frac{\left( -\frac{1}{2} \right) \left( -\frac{3}{2} \right)}{2!} \left( -\frac{x}{4} \right)^2 + \dots \right)$ |  |
|             | $= \frac{1}{2} \left( 4 + x^2 \right) \left( 1 + \frac{x}{8} + \frac{3}{128} x^2 + \dots \right)$                                                                                                                            |  |
|             | $= \frac{1}{2} \left( 4 + \frac{1}{2}x + \frac{3}{32}x^2 + x^2 + \dots \right)$                                                                                                                                              |  |
|             | $=2+\frac{1}{4}x+\frac{35}{64}x^2+$                                                                                                                                                                                          |  |
|             | expansion is valid for                                                                                                                                                                                                       |  |
|             | $\left  -\frac{x}{4} \right  < 1$                                                                                                                                                                                            |  |
|             | $\Rightarrow -4 < x < 4$                                                                                                                                                                                                     |  |
|             |                                                                                                                                                                                                                              |  |
|             | $\therefore \left\{ x \in \mathbb{R} : -4 < x < 4 \right\}$                                                                                                                                                                  |  |
| 2(1)        |                                                                                                                                                                                                                              |  |
| 3(b)<br>(i) | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos x}{1 + \sin x}$                                                                                                                                                                |  |
|             | CC 113H2                                                                                                                                                                                                                     |  |
|             | Differentiating $(1 + \sin x) \frac{dy}{dx} = \cos x$ w.r.t x,                                                                                                                                                               |  |
|             | $(1+\sin x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \cos x \frac{\mathrm{d}y}{\mathrm{d}x} = -\sin x  \text{(shown)}$                                                                                                          |  |

| 3(ii)  | Differentiating w.r.t. $x$ ,                                                                                                                                                                                  | <br> |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|        | $\cos x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(1 + \sin x\right) \frac{\mathrm{d}^3 y}{\mathrm{d}x^3} - \sin x \frac{\mathrm{d}y}{\mathrm{d}x} + \cos x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\cos x$ |      |
|        | When $x = 0$ ,<br>$y = \ln(1+0) = 0$                                                                                                                                                                          |      |
|        | $\frac{dy}{dx} = \frac{\cos 0}{1 + \sin 0} = 1$                                                                                                                                                               |      |
|        |                                                                                                                                                                                                               |      |
| ļ      | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -1$                                                                                                                                                                   |      |
|        | $(1)(-1) + (1+0)\frac{d^3y}{dx^3} - (0)(1) + (1)(-1) = -1$                                                                                                                                                    |      |
|        | $\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 1$                                                                                                                                                                    | 4    |
|        | $y = 0 + (1)x + \frac{(-1)}{2!}x^2 + \frac{(1)}{3!}x^3 + \dots$                                                                                                                                               |      |
|        | $= x - \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots$                                                                                                                                                               |      |
| 3(iii) | $\ln\left(\frac{1-\sin x}{2}\right) = \ln\left(1+\sin(-x)\right) - \ln 2$                                                                                                                                     |      |
|        | $= -\ln 2 + (-x) - \frac{1}{2}(-x)^2 + \frac{1}{6}(-x)^3 + \dots$                                                                                                                                             |      |
|        | $= -\ln 2 - x - \frac{1}{2}x^2 - \frac{1}{6}x^3 + \dots$                                                                                                                                                      |      |
| 100    |                                                                                                                                                                                                               | <br> |
| 4(i)   | A normal to $p_1$ is $\begin{pmatrix} 1\\3\\-2 \end{pmatrix} \times \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 3\\-3\\-3 \end{pmatrix} = -3 \begin{pmatrix} -1\\1\\1 \end{pmatrix}$ .            |      |
|        | A normal to $p_2$ is $\begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$ .                                                                                                                                            |      |
|        | Since $\begin{pmatrix} -1\\1\\1 \end{pmatrix}$ $\begin{pmatrix} 4\\1\\3 \end{pmatrix}$ = -4+1+3=0, $p_1$ is perpendicular to $p_2$ .                                                                          |      |

| F 4 (2.45 |                                                                                                                                                                                                |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4(ii)     | Show $(1,0,-1)$ lies on $I$ .                                                                                                                                                                  |
|           | Equation of $p_1$ is $\underline{r} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = -2$                                                                                                     |
|           | Since $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = -1 + 0 - 1 = -2, (1, 0, -1) \text{ lies on } p_1.$                                        |
|           | Since $4(1)+0+3(-1)=1$ , $(1,0,-1)$ lies on $p_2$ .                                                                                                                                            |
|           | Since $(1,0,-1)$ lies on both planes, it lies on $I$ .                                                                                                                                         |
|           | Find equation of line                                                                                                                                                                          |
|           | Line <i>l</i> is parallel to $\begin{pmatrix} -1\\1\\1 \end{pmatrix} \times \begin{pmatrix} 4\\1\\3 \end{pmatrix} = \begin{pmatrix} 2\\7\\-5 \end{pmatrix}$ .                                  |
|           | Equation of $l: \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 7 \\ -5 \end{pmatrix}, t \in \mathbb{R}$                                                      |
|           | Alternative #1                                                                                                                                                                                 |
|           | $p_1: \mathbf{r} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \implies p_1: -x+y+z = -2 (1)$ |
|           | $p_2: 4x + y + 3z = 1$                                                                                                                                                                         |
|           | Solving (1) and (2) simultaneously, by GC, equation of <i>l</i> :                                                                                                                              |
|           | $\begin{pmatrix} 3/5 \end{pmatrix} \begin{pmatrix} -2/5 \end{pmatrix}$                                                                                                                         |
|           | $\mathbf{r} = \begin{pmatrix} 3/5 \\ -7/5 \\ 0 \end{pmatrix} + s \begin{pmatrix} -2/5 \\ -7/5 \\ 1 \end{pmatrix}, s \in \mathbb{R}$                                                            |
|           |                                                                                                                                                                                                |
|           | $\mathbf{r} = \begin{pmatrix} 3/5 \\ -7/5 \\ 0 \end{pmatrix} + t \begin{pmatrix} -2 \\ -7 \\ 5 \end{pmatrix}, t \in \mathbb{R}$                                                                |
|           |                                                                                                                                                                                                |

(iii) Let C be the point 
$$(1,0,-1)$$
 on  $I$  and  $F$  be the foot of perpendicular of  $B$  to  $I$ .

$$\overline{BC} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix}$$

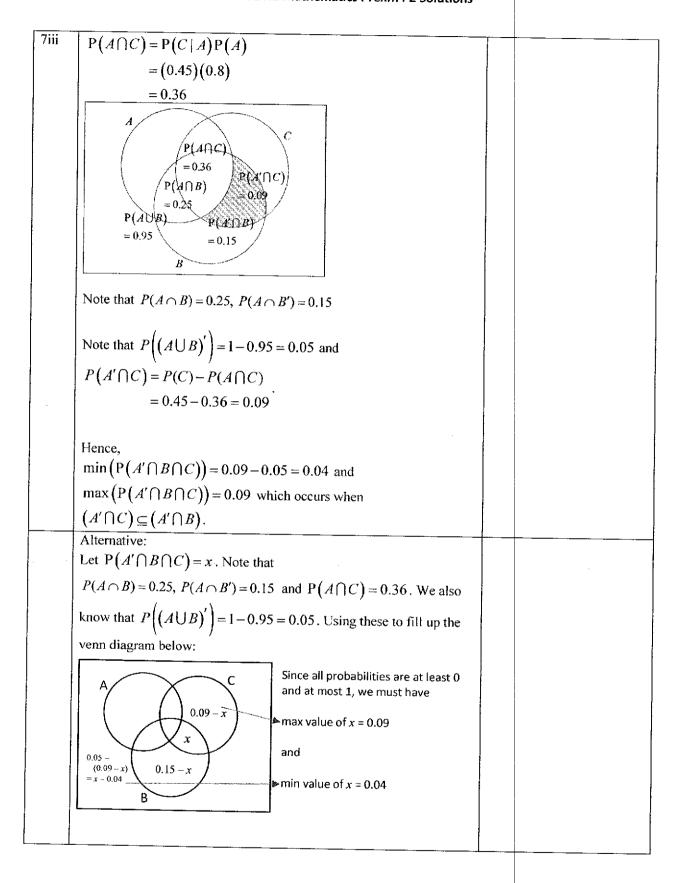
$$\overline{BF} = \begin{pmatrix} \overline{BC} \cdot \mathbf{n}_1 \\ |\mathbf{n}_1| \end{pmatrix} |\mathbf{n}_1| , \text{ where } \mathbf{n}_1 \text{ is a normal to } p_1$$

$$= \frac{(\overline{BC} \cdot \mathbf{n}_1) \mathbf{n}_1}{|\mathbf{n}_1|^2}$$

$$= \frac{1}{3} \begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

$$\overline{BA} = \overline{OA} - \overline{OB} = \begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix}$$
Area of  $\triangle ABB' = 2 \times (\text{Area of } \triangle ABF)$ 

$$= 2 \times \frac{1}{2} |\overline{BA} \times \overline{BF}|$$


$$= \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix} \times \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$$

$$= \frac{\sqrt{26}}{3} \text{ units}^2$$

|             | Alternative (finding $\overline{BF}$ using $\overline{CF}$ ) $\overline{CB} = \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$                                                   |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | $\overline{CF} = \frac{\left(\overline{CB}, \begin{pmatrix} 2\\7\\-5 \end{pmatrix}\right) \begin{pmatrix} 2\\7\\-5 \end{pmatrix}}{4+49+25}$                                                                                                                           |
|             | $= \frac{1}{78} \left( \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \\ -5 \end{pmatrix} \right) \begin{pmatrix} 2 \\ 7 \\ -5 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 \\ 7 \\ -5 \end{pmatrix}$                                            |
|             | $\overline{BF} = \overline{CF} - \overline{CB} = \frac{1}{3} \begin{pmatrix} 2 \\ 7 \\ -5 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$                                                        |
| (iv)        | $Q$ lies $p_1$ and $p_2$ , hence $Q$ lies in the line $I$ .                                                                                                                                                                                                           |
| (v)         | $\begin{bmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 7 \\ -5 \end{bmatrix} \cdot \begin{pmatrix} a \\ 3 \\ 1 \end{pmatrix} = -9$ $a - 1 + (2a + 16)t = -9 \qquad(*)$                                                                                  |
|             | a-1+(2a+16)t=-9  (*)                                                                                                                                                                                                                                                  |
|             | Case 1: If $a = -8$ , (*) is true for all values of $t$ .                                                                                                                                                                                                             |
|             | Case 2: If $a \neq -8$ , $t = -\frac{a+8}{2a+16} = -\frac{1}{2}$ . $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 \\ 7 \\ -5 \end{pmatrix} = \begin{pmatrix} 0 \\ -3.5 \\ 1.5 \end{pmatrix}$ |
|             | In both cases, we have (0, 2,5,1,5) being an back tout                                                                                                                                                                                                                |
|             | In both cases, we have $(0, -3.5, 1.5)$ lying on both $l$ and $p_3$ .                                                                                                                                                                                                 |
|             | Hence, coordinates of $Q$ is $(0,-3.5,1.5)$ .                                                                                                                                                                                                                         |
| 5i          | NT. 1                                                                                                                                                                                                                                                                 |
|             | Number of ways = $\frac{8!}{3!}$                                                                                                                                                                                                                                      |
| <del></del> | = 6720                                                                                                                                                                                                                                                                |
| 5ii         | Different cases: SxxxxSxxxxxS, SxxxxxSxxxxS,                                                                                                                                                                                                                          |
|             | xSxxxxSxxxxS, and SxxxxSxxxxSx.                                                                                                                                                                                                                                       |
|             | Number of ways = $4 \times \frac{9!}{2!2!}$                                                                                                                                                                                                                           |
|             |                                                                                                                                                                                                                                                                       |
|             | = 362880                                                                                                                                                                                                                                                              |

|    |                                                                                                                                                                                                                          | <br> |      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
|    | P(all 8 letters distinct) = $\frac{{}^{2}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{1} \times {}^{5}C_{5}}{{}^{12}C_{8}}$                                                                                                  |      |      |
|    | $=\frac{4}{165}$                                                                                                                                                                                                         |      |      |
|    | Alternative P(all 8 letters distinct)                                                                                                                                                                                    |      |      |
|    | $= \left(\frac{2}{12}\right) \left(\frac{3}{11}\right) \left(\frac{2}{10}\right) \left(\frac{1}{9}\right) \left(\frac{1}{8}\right) \left(\frac{1}{7}\right) \left(\frac{1}{6}\right) \left(\frac{1}{5}\right) \times 8!$ |      | 7000 |
|    | $=\frac{4}{165}$                                                                                                                                                                                                         |      |      |
| 6i | $P(X=1) = \frac{1}{3}$                                                                                                                                                                                                   |      |      |
|    | $P(X=2) = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$                                                                                                                                                                  |      |      |
|    | $P(X=3) = \frac{2}{3} \times \frac{1}{2} \times 1 = \frac{1}{3}$                                                                                                                                                         |      |      |
|    |                                                                                                                                                                                                                          |      |      |
|    | $\frac{1}{3}$ food $\frac{1}{1}$                                                                                                                                                                                         |      |      |
|    | $\frac{1}{2}$ food $\frac{1}{2}$ food                                                                                                                                                                                    |      |      |
|    | $\frac{2}{3}$ No food $\frac{1}{2}$ No food $\frac{1}{2}$ No food                                                                                                                                                        |      |      |
|    | 2 0 No food                                                                                                                                                                                                              |      |      |

| 6ii |                                                                                  |
|-----|----------------------------------------------------------------------------------|
| OII | (ii) $P(X = x) = \frac{1}{N}$ , for $x = 1, 2,, N$                               |
|     | $E(X) = \frac{N+1}{2}$ (by symmetry)                                             |
|     | OR                                                                               |
|     | $E(X) = 1 \cdot \frac{1}{N} + 2 \cdot \frac{1}{N} + \dots + N \cdot \frac{1}{N}$ |
|     | $=\frac{1}{N}(1+2+\cdots N)$                                                     |
|     | $=\frac{1}{N}\left(\frac{N}{2}(1+N)\right)$                                      |
|     | $=\frac{N+1}{2}$                                                                 |
| ļ   | $Var(X) = E(X^2) - [E(X)]^2$                                                     |
|     | $=\sum_{x=1}^{N}x^{2}P(X=x)-\left(\frac{N+1}{2}\right)^{2}$                      |
|     | $= \frac{1}{N} \sum_{x=1}^{N} x^2 - \left(\frac{N+1}{2}\right)^2$                |
|     | $=\frac{1}{N}\left[\frac{N(N+1)(2N+1)}{6}\right]-\left(\frac{N+1}{2}\right)^2$   |
|     | $=\frac{N+1}{12}\Big[2(2N+1)-3(N+1)\Big]$                                        |
|     | $=\frac{(N+1)(N-1)}{(N-1)}$                                                      |
|     | 12                                                                               |
| 7i  | $P(A \cup B) = P(A) + P(B) - P(A \cap B)$                                        |
|     | $0.95 = 0.8 + 0.4 - P(A \cap B)$                                                 |
|     | $P(A \cap B) = 0.25$                                                             |
|     | A and B are not independent because                                              |
|     | $P(A \cap B) = 0.25 \neq 0.32 = (0.8)(0.4) = P(A)P(B)$ .                         |
| 7ii | $0.2 < c \le 1$                                                                  |
|     | Think: If $P(C) \le 0.2$                                                         |
|     | then it is possible for $C \subseteq A'$ . This means it is                      |
|     | ( 0.8 ) still possible for A and C                                               |
|     | to not intersect. But when $P(C) > 0.2$ , this                                   |
|     | scenario won't happen!                                                           |
|     |                                                                                  |



8(a) B(n,p)Given:  $E(X) = 2.75 \implies np = 2.75 \quad ---(1)$  $P(X < 2) = P(X \le 1) = 0.13122$ Method 1: Using GC: FLORT RUTO Q+bi RADIAN HP FOR QTb1 Y1 Y2 ERROR ERROR 0.0935 0.1312 9.1682 9.1786 X=5 Hence n = 5 $p = \frac{2.75}{5} = 0.55$ Method 2: P(X=0) + P(X=1) = 0.13122 $(1-p)^n + np(1-p)^{n-1} = 0.13122$ From (1):  $(1-p)^{\frac{2.75}{p}} + 2.75(1-p)^{\frac{2.75}{p}-1} = 0.13122$ MDRMAL FLOAT AUTO a+bi RADIAN MP CALC INTERSECT Intersection X=0.55 Y=0 From the GC: p = 0.55 $n = \frac{2.75}{0.55} = 5$ bi (1) The probability that a resident uses Sharebike is  $\frac{a}{100}$  for all the n residents.

(2) The residents use Sharebike independently.

| 1 **     |                                                                                                                                                                                                                       |          |   |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|--|
| bii      | $X \sim B(45, 0.08)$                                                                                                                                                                                                  |          | - |  |
|          | $P(9 \le X \le 13) = P(X \le 13) - P(X \le 8)$                                                                                                                                                                        |          |   |  |
| -        | = 0.00843                                                                                                                                                                                                             |          |   |  |
| biii     | $X \sim B(12, r)$ , where $r = \frac{a}{100}$                                                                                                                                                                         |          |   |  |
|          | P(X=1) < P(X=2) and $P(X=2) > P(X=3)$                                                                                                                                                                                 |          |   |  |
|          | $\left  \binom{12}{1} r (1-r)^{11} < \binom{12}{2} r^2 (1-r)^{10} \text{ and } \binom{12}{2} r^2 (1-r)^{10} > \binom{12}{3} r^3 (1-r)^9 \right $                                                                      |          |   |  |
|          | $r(1-r)^{10}[12(1-r)-66r] < 0$ and $r^2(1-r)^9[66(1-r)-220r] > 0$                                                                                                                                                     |          |   |  |
|          | Since $(1-r)>0$ and $r>0$ ,                                                                                                                                                                                           |          |   |  |
|          | 12 - 78r < 0 and $66 - 286r > 0$                                                                                                                                                                                      | :        |   |  |
|          | $r > \frac{2}{13}$ and $r < \frac{3}{13}$                                                                                                                                                                             |          |   |  |
|          | $\therefore \frac{2}{13} < r < \frac{3}{13}$                                                                                                                                                                          |          |   |  |
|          | 1 13 13                                                                                                                                                                                                               |          |   |  |
| <u> </u> | $\therefore \frac{200}{13} < a < \frac{300}{13}$                                                                                                                                                                      |          |   |  |
| 0 (2)    |                                                                                                                                                                                                                       |          |   |  |
| 9 (i)    | Let $w = x - 425$                                                                                                                                                                                                     |          |   |  |
|          | $\frac{-}{x} = \frac{-}{w} + 425 = 425 - \frac{136}{40} = 421.6$ (exact value)                                                                                                                                        |          |   |  |
|          | $\left  s_x^2 = s_w^2 = \frac{1}{39} \left( 4927.5 - \frac{\left(-136\right)^2}{40} \right) = \frac{4465.1}{39} = 114.49 \approx 114$                                                                                 |          |   |  |
| (ii)     | Let $\mu$ g be the population mean.                                                                                                                                                                                   |          |   |  |
|          | $H_0: \mu = 425$                                                                                                                                                                                                      |          |   |  |
|          | $H_1: \mu \neq 425$                                                                                                                                                                                                   |          |   |  |
|          | Level of Significance: 5% Test Statistic:                                                                                                                                                                             |          |   |  |
|          | Since $n = 40$ is large, by Central Limit Theorem, $\overline{X}$ is approximately normal.                                                                                                                            |          |   |  |
| į        | When H <sub>0</sub> is true, $Z = \frac{\overline{X} - 425}{S/\sqrt{n}} \sim N(0,1)$ approximately.                                                                                                                   |          |   |  |
|          | Computation: <i>p</i> -value = 0.044466 (or <i>z</i> -value = -2.0097)                                                                                                                                                |          |   |  |
|          | Conclusion: Since $p$ -value = 0.0445 < 0.05, (or $ -2.01  > 1.96$ ), $H_0$ is rejected at 5% level of significance. Hence there is sufficient evidence to conclude that the mean mass of a can of beans is not 425g. |          |   |  |
| (iii)    | No assumption is needed. Since the sample size is large, by Central                                                                                                                                                   |          |   |  |
| . 1      | Limit Theorem, the distribution of the sample mean mass of a can of                                                                                                                                                   |          |   |  |
| (iv)     | beans, $X$ , is approximately normal.                                                                                                                                                                                 |          |   |  |
| (41)     | There is a probability of 0.05 that the test concludes that the mean mass of a can of beans is not 425g which it is actually 425g.                                                                                    |          | 7 |  |
|          | 8 15 actuary 72.78.                                                                                                                                                                                                   | <u> </u> |   |  |

| (v)     | Let Y g be the mass of a packet of frozen corn and $\mu_Y$ g be the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Í       | population mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | $H_0: \mu_y = 380$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | $H_1: \mu_Y < 380$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | Level of Significance: α%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Í       | Test Statistic:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | When H <sub>0</sub> is true, $Z = \frac{\overline{Y} - 380}{12\sqrt{n}} \sim N(0,1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | $\sqrt{2}\sqrt{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Í       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | Computation: $y = 375$ , p-value = 0.053292 (or z-value = -1.6137)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 1 3 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | For $H_0$ not to be rejected, p-value > $\frac{\alpha}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | $\Rightarrow 0.053292 > \frac{\alpha}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | $\therefore \{\alpha \in \mathbb{R} : 0 < \alpha < 5.33\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | $\frac{1}{1} \left( \frac{1}{2} \right) \right) \right) \right) \right)}{1} \right) \right) \right)} \right) \right)} \right)} \right) \right)} \right) \right)}}} \right) } \right) } \right) } } \right) } } } }$ |
| 10 (i)  | Lat Vand Vha the wares in a Country of the state of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10(1)   | Let X and Y be the masses, in g, of a randomly chosen butter cookie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ļ       | and a randomly chosen chocolate cookie respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | $X \sim N(15, 0.4^2)$ and $Y \sim N(20, 1.2^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 11 11(13, 0.11) und 1 11(20, 1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u></u> | $P(X > 15.5) = 0.10565 \approx 0.106$ (to 3 s.f.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (ii)    | Let W be the number of butter cookies (out of 10) with mass more than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | 15.5g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | $W \sim N(10, 0.10565)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | $P(W \ge 4) = 1 - P(W \le 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (iii)   | = 0.0155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (111)   | Let $S = \frac{6}{100} (X_1 + + X_{12}) + \frac{7.5}{100} (Y_1 + + Y_{12})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 100 (1 100 (1 100 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | 6 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | $E(S) = \frac{6}{100}(12)(15) + \frac{7.5}{100}(12)(20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | = 28.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | $(\sigma_{s})^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | $Var(S) = \left(\frac{6}{100}\right)^{2} (12)(0.4)^{2} + \left(\frac{7.5}{100}\right)^{2} (12)(1.2)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ļ       | (100) (100) (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| }       | = 0.104112 (exact value)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | $S \sim N(28.8, 0.104112)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | P(S < 29) = 0.732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| İ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| (iv) | We assume that the masses of cookies are independent of each other.                                                                                                                                                                                                                                                                             | <u> </u> |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | that the masses of cookies are independent of each other.                                                                                                                                                                                                                                                                                       |          |
|      | Note: It is <b>insufficient</b> to say that "mass of a butter cookie is independent of the mass of a chocolate cookie". This is because for the 12 butter cookies bought, we also need the condition that the mass of a butter cookie is independent of the mass of any other butter cookie. The same goes for the 12 chocolate cookies bought. |          |
| (v)  | Suppose <i>T</i> follows normal distribution i.e.                                                                                                                                                                                                                                                                                               |          |
|      | $T \sim N(16, 9^2)$                                                                                                                                                                                                                                                                                                                             |          |
|      | P(T < 0) = 0.037720                                                                                                                                                                                                                                                                                                                             |          |
|      | which is not insignificant and time taken cannot be negative. Hence a normal distribution, with this mean and standard deviation, would not give a good approximation to the distribution of <i>T</i> .                                                                                                                                         |          |
|      | Alternatively,                                                                                                                                                                                                                                                                                                                                  |          |
|      | Due to the empirical rule of normal distribution, we would expect                                                                                                                                                                                                                                                                               |          |
|      | approximately 95% of the data to lie within 2 standard deviation                                                                                                                                                                                                                                                                                | ļ        |
|      | from the mean. $16 \pm 2(9)$ have a range of values from $-2$ to 34.                                                                                                                                                                                                                                                                            |          |
|      | This would mean a non-negligible/significant 2.5% will have values                                                                                                                                                                                                                                                                              |          |
|      | below -2, which is impossible as time taken cannot be negative.                                                                                                                                                                                                                                                                                 |          |
|      | Hence a normal distribution, with this mean and standard deviation, would not give a good approximation to the distribution of <i>T</i> .                                                                                                                                                                                                       |          |
| (vi) | Since $n \ge 30$ , by Central Limit Theorem,                                                                                                                                                                                                                                                                                                    |          |
|      | $\overline{T} \sim N\left(16, \frac{9^2}{n}\right)$ approximately.                                                                                                                                                                                                                                                                              |          |
|      | P(16 < T < 18) > 0.48                                                                                                                                                                                                                                                                                                                           |          |
|      | $P(\overline{T} > 18) < 0.5 - 0.48 = 0.02$                                                                                                                                                                                                                                                                                                      |          |
|      | Given $P\left(Z > \frac{18-16}{9/\sqrt{n}}\right) < 0.02$                                                                                                                                                                                                                                                                                       |          |
|      | $P\left(Z > \frac{2\sqrt{n}}{9}\right) < 0.02$                                                                                                                                                                                                                                                                                                  |          |
|      | From the GC, $P(Z > 2.0537) = 0.02$                                                                                                                                                                                                                                                                                                             |          |
|      | $\frac{2\sqrt{n}}{9} > 2.0537$                                                                                                                                                                                                                                                                                                                  |          |
|      | n > 85.4 Least $n = 86$                                                                                                                                                                                                                                                                                                                         |          |
|      |                                                                                                                                                                                                                                                                                                                                                 |          |