2016 JC2 Preliminary Examination

Name		Class	16S
PHYSICS			9646/01
			• • • • • • • • • • • • • • • • • • • •
Multiple Choice		15 S	eptember 2016
			1 hour 15 min
Additional Mater	ials: Multiple Choice Answer Sheet		
•	Soft clean eraser Soft pencil (type B or HB is recommended)		

READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.

Write your **name** and **class** in the spaces provided at the top of this page.

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, class and index number on the Answer Sheet in the spaces provided.

There are **forty** questions on this paper. Answer **all** questions.

For each question there are four possible answers A, B, C and D.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

Data

speed of light in free space, permeability of free space, permittivity of free space,

elementary charge,
the Planck constant,
unified atomic mass constant,
rest mass of electron,
rest mass of proton,
molar gas constant,
the Avogadro constant,
the Boltzmann constant,
gravitational constant,
acceleration of free fall,

Formulae

uniformly accelerated motion,

work done on/by a gas, hydrostatic pressure.

gravitational potential,

displacement of particle in s.h.m., velocity of particle in s.h.m.,

mean kinetic energy of a molecule of an ideal gas resistors in series, resistors in parallel,

electric potential,

alternating current/voltage, transmission coefficient,

radioactive decay

decay constant

$$c = 3.00 \times 10^8 \,\mathrm{m \ s^{-1}}$$

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H m^{-1}}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F m^{-1}}$$

 $(1/(36\pi)) \times 10^{-9} \,\mathrm{F m^{-1}}$

$$e = 1.60 \times 10^{-19} \text{ C}$$

$$h = 6.63 \times 10^{-34} \,\mathrm{J s}$$

$$u = 1.66 \times 10^{-27} \text{ kg}$$

$$m_{\rm e} = 9.11 \times 10^{-31} \, \rm kg$$

$$m_{\rm p} = 1.67 \times 10^{-27} \, \rm kg$$

$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$$

$$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

$$g = 9.81 \,\mathrm{m \, s^{-2}}$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$W = p \Delta V$$

$$p = \rho gh$$

$$\phi = -\frac{Gm}{r}$$

$$x = x_0 \sin \omega t$$

$$v = v_0 \cos \omega t$$

$$=\pm\,\omega\,\sqrt{(x_o^2-x^2)}$$

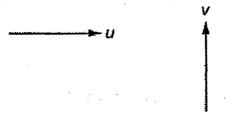
$$E = \frac{3}{2}kT$$

$$R = R_1 + R_2 + \dots$$

$$1/R = 1/R_1 + 1/R_2 + \dots$$

$$V = \frac{Q}{4\pi\varepsilon_{c}r}$$

$$x = x_0 \sin \omega t$$


$$T \propto \exp(-2kd)$$

where
$$k = \sqrt{\frac{8\pi^2 m(U - E)}{h^2}}$$

$$x = x_0 \exp(-\lambda t)$$

$$\lambda = \frac{0.693}{t_1}$$

The initial velocity of an object is shown by the vector u. The final velocity of the object is shown by the vector v.

Which arrow shows the change in velocity of the object?

Α

В

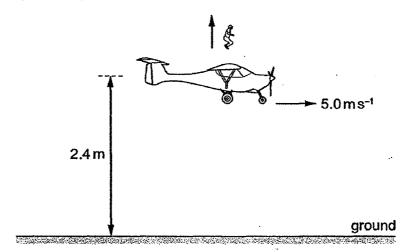
C

D

2 To find the resistivity of a semiconductor, a student makes the following measurements of a cylindrical rod of the material.

length = $25 \pm 1 \text{ mm}$

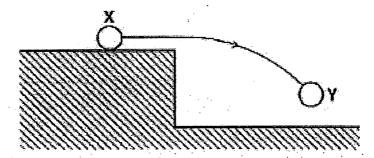
diameter = 5.0 ± 0.1 mm


resistance = $68 \pm 1 \Omega$

He calculates the resistivity to be 5.34 x 10 $^2\,\Omega$ m.

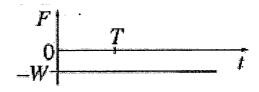
How should the uncertainty be included in his statement of the resistivity?

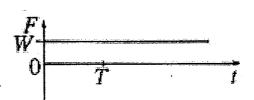
- **A** $(5.34 \pm 0.07) \times 10^{-2} \Omega \text{ m}$
- B $(5.34 \pm 0.09) \times 10^{-2} \Omega \text{ m}$
- **C** $(5.3 \pm 0.4) \times 10^{-2} \Omega \text{ m}$
- **D** $(5.3 \pm 0.5) \times 10^{-2} \Omega \text{ m}$


- 3 An object is released from the open door of an aircraft in level flight.
 It is observed that it takes three seconds for the object to reach terminal velocity.
 Which statement about the motion of the object is correct?
 - A The horizontal component of its velocity is constant.
 - B The horizontal component of its acceleration is zero.
 - C The vertical component of its velocity decreases for three seconds.
 - **D** The vertical component of its acceleration is zero after three seconds.
- A toy aeroplane is flying above the ground at a constant horizontal velocity of 5.0 m s⁻¹ when the toy pilot is ejected. The aeroplane propels the toy pilot upward from a height of 2.4 m above the ground so that the vertical component of his speed is initially 3.0 m s⁻¹.

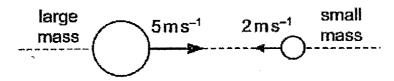
With what speed does the toy pilot hit the ground? Ignore the effects of air resistance.

- A 3.7 m s⁻¹
- **B** 5.8 m s⁻¹
- C 7.5 m s⁻¹
- **D** 9.0 m s⁻¹


A ball of weight *W* slides along a smooth horizontal surface until it falls off the edge at time *T*.

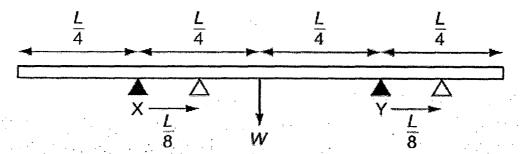


Which graph represents how the resultant vertical force F, acting on the ball, varies with time t as the ball moves from position X to position Y?


D

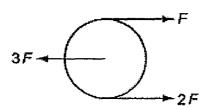
 $\begin{array}{c|c}
F & T \\
0 & T
\end{array}$

A large mass moving at a velocity of 5 m s⁻¹ collides head-on with a small mass moving at a velocity of 2 m s⁻¹ in the opposite direction.

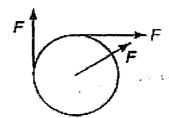

The collision is elastic.

After the collision, both masses move to the right. The large mass has a velocity v_1 and the small mass has a velocity v_2 .

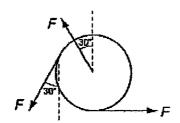
Which pair of values v_1 and v_2 is possible?

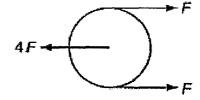

	V ₁	V ₂
Α	2 m s ⁻¹	5 m s ⁻¹
В	3 m s ⁻¹	10 m s ⁻¹
С	4 m s ⁻¹	4 m s ⁻¹
D	5 m s ⁻¹	12 m s ⁻¹

7 A uniform plank, of weight W and length L is supported at points X and Y, each at distances $\frac{L}{4}$ from the ends of the plank.

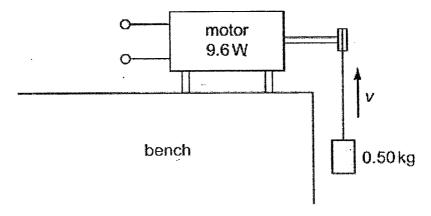


- What will be the increase of the force on the plank exerted by support X if both X and Y are moved a distance $\frac{L}{8}$ to the right from their original positions?
- A $\frac{W}{16}$
- B $\frac{W}{8}$
- $c \frac{W}{4}$
- D $W\left(\frac{5}{16}\right)$
- An isolated disc is subjected to three forces, each given in terms of units of magnitude *F*. In which situation will the disc experience both a resultant force and a resultant torque?


Α

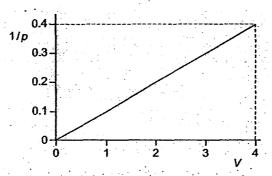

В

C

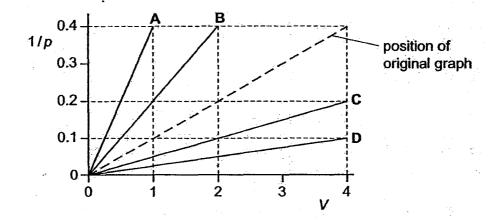

D

9 The function of many machines is to change energy from one form to another as efficiently as possible.

Which machine is 100% efficient?


- A a car engine as it converts chemical energy to kinetic energy
- B an electrical heater in a kettle as it converts electrical energy to heat
- C a lamp as it converts electrical energy to light
- D a rocket as it converts chemical energy to gravitational potential energy
- 10 A small electric motor is 20% efficient. Its input power is 9.6 W when it is lifting a mass of 0.50 kg at a steady speed v.

What is the value of $\sqrt{?}$


- A 0.39 m s⁻¹
- B 2.0 m s⁻¹
- C 2.8 m s⁻¹
- D 3.0 m s⁻¹
- 11 The root-mean-square speed of the molecules of an ideal gas is v. Determine the new root-mean-square speed if the gas is heated at constant volume so that its pressure is increased from p to 3p.
 - A $\frac{1}{9}$
 - B v√3
 - **C** 3*v*
 - **D** 9*v*

12 A fixed amount of an ideal gas has pressure p and volume V. The graph shows the variation of 1/p with V at a constant temperature.

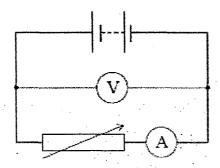
The amount of gas and the thermodynamics temperature are both doubled.

Which line will be produced?

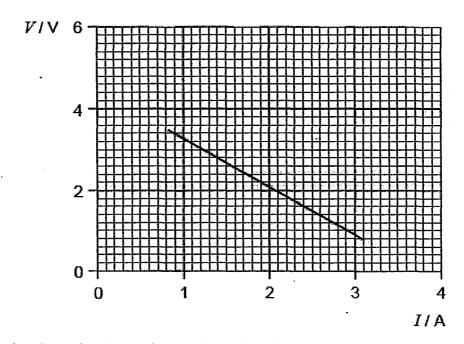
13 In an experiment to determine the specific heat capacity of a liquid by an electrical method, a student obtained the following results.

Mass of liquid heated	1.5 kg
Initial liquid temperature	300 K
Final liquid temperature	357 K
Electrical power of heating	1.0 kW
Time of heating	180 s

What is the specific heat capacity of the liquid?


A 2.1 J kg⁻¹ K⁻¹

B 18 J kg⁻¹ K⁻¹

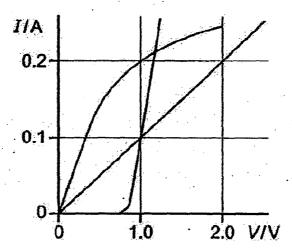

C 1800 J kg⁻¹ K⁻¹

D 2100 J kg⁻¹ K⁻¹

To investigate the variation of current *I* in a variable resistor with the potential difference *V* across it, the circuit shown below was used.

The variation of current / with V is shown below.

From the data it can be shown that the internal resistance of the battery is


A 0.2Ω

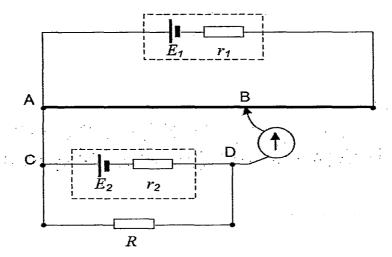
 $\mathbf{B} = 0.5 \,\Omega$

 $C = 1.2 \Omega$

 \mathbf{D} 1.8 Ω

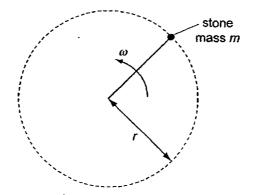
The graph shows the I-V characteristics of three electrical components, a diode, a 15 filament lamp and a resistor, plotted on the same axes.

Which statement is correct?


- Α The resistance of the resistor equals that of the filament lamp when V = 0.8 V.
- В The resistance of the diode is constant above 0.8 V.
- C The resistance of the filament lamp is twice that of the resistor at 1.0 V.
- D The resistance of the diode equals that of the filament lamp at about 1.2 V.

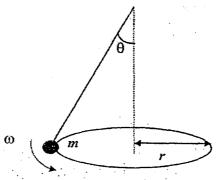
16 Bulb A has a power rating of 1000 W, 120 V. Bulb B has a power rating of 1000 W, 240 V. The bulbs are connected in series and powered by a source of e.m.f. E = 30 V. The resistance of bulbs A & B is assumed to be constant.

Which of the following must be true?

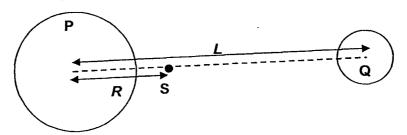

- Α Bulb B will be brighter than bulb A.
- В Current through bulb B is higher than the current through bulb A.
- C Bulb A and bulb B have the same resistance value.
- D Bulb A has higher resistance than bulb B.

The circuit below shows a potentiometer connected to a cell E_2 of internal resistance r_2 and resistor R. Point B is the balance point when the galvanometer shows null deflection.

Which of the following statements about the potentiometer circuit is true?


- A At balance point, the current through AB has the same magnitude as the current through CD.
- B At balance point, there is no current running through CD.
- **C** At balance point, the potential difference between AB equals E_2 if r_2 is zero.
- **D** The length AB will be shorter if r_2 is zero.
- 18 A stone with mass m is attached to light rod. The stone is rotated in a vertical circle of radius r with a constant angular speed ω as shown.

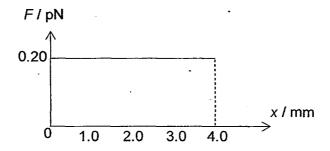
What is the difference between the maximum and minimum magnitude of the tension in the light rod during one revolution of the stone? The acceleration of free fall is *g*.


- A zero
- **B** 2mg
- $\mathbf{C} mr\omega^2$
- D $2mr\omega^2$

A small bob of mass m which hangs from a light string is set to move in a horizontal circle of radius r with angular velocity ω . The string makes an angle θ with the vertical.

What is the tension in the string?

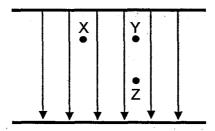
- A $\frac{mg}{\sin\theta}$
- B $\frac{mg}{\tan \theta}$
- $C \qquad \frac{mr\omega^2}{\tan\theta}$
- $D = \frac{mr\omega^2}{\sin\theta}$
- There are two isolated planets P and Q of masses M_P and M_Q respectively. Their centres are of distance L apart and they rotate with a uniform angular velocity ω about a common axis S which intersects the line joining their centres perpendicularly as shown.


If the distance of planet P from the axis S is R, which of the following does **not** give the correct expression for the centripetal force on planet Q?

- A $M_PR\omega^2$
- B $M_{\rm Q}(L-R)\omega^2$
- $C \qquad \frac{GM_PM_Q}{L^2}$
- $D = \frac{GM_PM_Q}{R^2}$

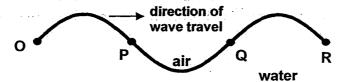
21 Planet **X** has a density ρ , radius R and acceleration of free fall a.

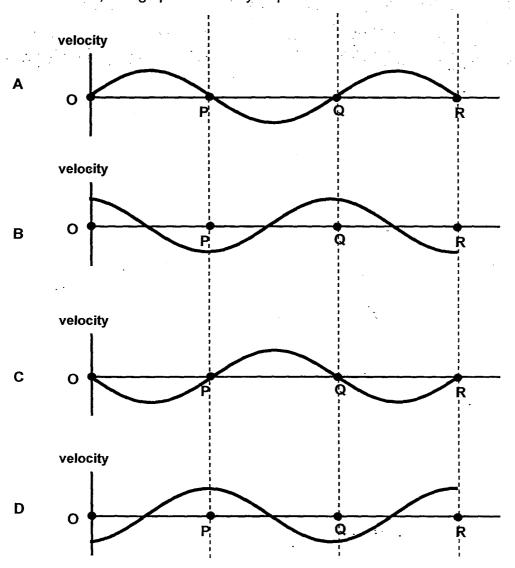
What is the acceleration of free fall of Planet Y with density 2ρ and radius 2R?


- A 8a
- **B** 4a
- C a
- **D** 0.5a
- The force *F* experienced by an electron when placed in an electric field varies with displacement *x* as shown in the graph below.

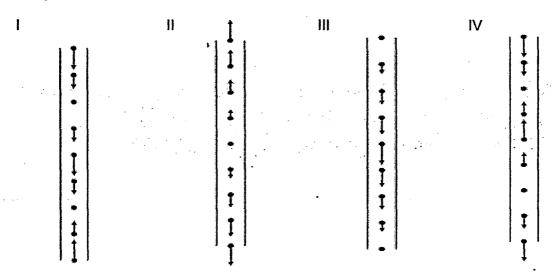
Calculate the change in electric potential energy of the electron when it was moved from x = 1.0 mm to x = 3.0 mm in the direction of the force.

- A $-8.0 \times 10^{-16} \text{ J}$
- B $-4.0 \times 10^{-16} \text{ J}$
- C $4.0 \times 10^{-16} \text{ J}$
- **D** $8.0 \times 10^{-16} \text{ J}$


23 The diagram shows the electric field lines due to two charged parallel plates.

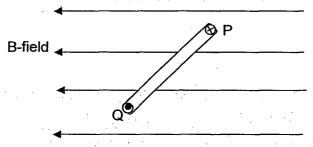

Which of the following statements must always be true?

- A The upper plate is at a positive potential and the lower plate is at a negative potential.
- B A proton at Z experiences a greater force than if it were placed at Y.
- C A proton at Z would experience the same force if it were placed at X.
- **D** A proton at Z experiences less force than if it were placed at Y.
- Which of the following is **not** an example of a system in approximate simple harmonic motion?
 - A A ball bouncing on the floor.
 - B A child swinging on a swing.
 - C A guitar string that has been struck.
 - D A car's radio antenna as it waves back and forth.


25 At a particular instant the profile of a surface wave on water is shown below.

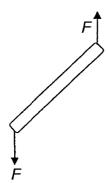
Which of the following graphs best represents the vertical velocity of the water molecules at this instant, taking upward velocity as positive?

The arrows on the diagrams represent the movement of the air molecules in a pipe in which a stationary longitudinal wave has been set up. The length of each arrow represents the amplitude of the motion, and the arrow head shows the direction of motion at a particular instant.

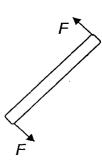

Which of the following diagrams shows a possible stationary wave that could be set up in the pipe?

- A II and IV
- B I and IV
- C I, II and IV
- D III only

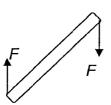
A diffraction grating with 400 lines per mm is illuminated with yellow light of 600 nm. What is the angle the second maxima makes with the principal axis?

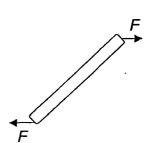

- A 2.75°
- **B** 13.9°
- C 28.7°
- **D** 73.7°

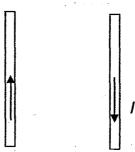
The figure below shows the top view of a current carrying coil in a uniform magnetic field at a particular time instant. The current at P is flowing perpendicularly into the plane of the paper and the current at Q is flowing perpendicularly out of the plane of the paper.



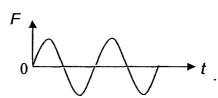
Which of the following correctly shows the direction of the forces, *F* acting on the coil at that time instant?


Α

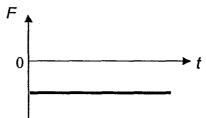

В


C

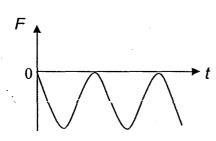
D

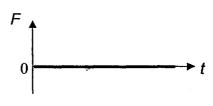


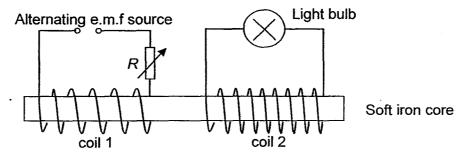
Two parallel conductors carry sinusoidal alternating currents that differ in phase by π radian. The figure below shows the flow of current at one particular time instant.



Which of the following graphs shows a possible variation of the force experienced by one of the conductors with respect to time?


Α


В


C

D

The figure below shows a system designed to control the brightness of a light bulb. Coil 1 and coil 2 are not electrically connected.

Which combination of actions will result in the dimmest possible light?

- A R is reduced and the soft iron core is removed from coil 2.
- **B** R is increased and the soft iron core is inserted into coil 2.
- **C** R is increased and the soft iron core is removed from coil 2.
- **D** R is reduced and the soft iron core is inserted into coil 2.

0010/100 P W P D4/00

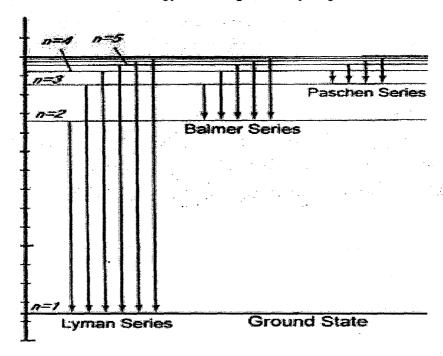
A flat circular coil has 120 turns and an area of 0.070 m². It is placed perpendicularly to a magnetic field. The flux density of the magnetic field is changed steadily from 80 mT to -80 mT over a period of 4.0 s.

What is the e.m.f. induced in the coil during this time?

- A 1.40 mV
- B 4.48 mV
- **C** 168 mV
- **D** 336 mV
- An ideal transformer has 100 turns in its primary coil and 500 turns in its secondary coil. The power supplied is 2000 W and the alternating voltage in the primary coil and secondary coil are V_D and 2000 V respectively.

Which of the following gives the correct values of voltage V_p and current I_p in the primary coil?

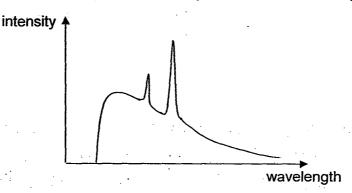
	V _p / V	I _p / A
Α.	400	1.0
В	400	5.0
С	10 000	1.0
D	10 000	5.0


The diagram shows a generator with supply cables linking to the factories. The generator produces an electrical power of 2000 kW, 240 kV. The supply cables have a total resistance of 1.5 k Ω .

Generator 2000 kW 240 kV	supply cables	Factories
240 kV		-

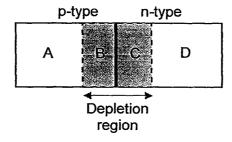
What is the power loss in the supply cables?

- A 38.4 kW
- B 104 kW
- C 208 kW
- D 2000 kW


34 The diagram below shows the energy level diagram of hydrogen.

Which of the following gives the correct region of the electromagnetic spectrum of the observed spectral lines?

	Lyman Series	Balmer Series	Paschen Series
Α	infra red	infra red	visible light
В	infra red	visible light	. ultra violet
С	ultra violet	visible light	infra red
D	ultra violet	infra red	visible light


35 The following graph shows the spectrum of X-rays emitted from an X-ray tube.

If the potential difference between the target and cathode is increased, while keeping the current in the X-ray tube constant, which of the following combinations represents a possible change in wavelength and intensity of the **spikes**?

	wavelength	intensity
Α	remain the same	increase
В	decrease	remain the same
С	remain the same	remain the same
D	decrease	increase

36 A p-n junction in equilibrium is shown in the diagram below.

Which of the following statements is false?

- A The depletion region increases when a negative potential is applied at region A and a positive potential is applied at region D.
- B Region B is negatively charged.
- C The electric field in region A is towards the left.
- **D** Under forward-bias, mobile electrons move from region D to region A.

- 37 Why is laser light monochromatic?
 - A The atoms in the laser medium are in a state of population inversion.
 - B The excited atoms in the laser medium are in a metastable state.
 - C Photons which trigger off stimulated emission produce more photons of the same energy.
 - **D** The photons produced by stimulated emission are reflected back by the use of reflecting mirrors in the laser system.

and the second test of the control of

- 38 Which of the statements is correct for a p-type semiconductor?
 - A There are excess holes in the valence band.
 - B There are excess holes in the conduction band.
 - C There are excess electrons in the valence band.
 - •D There are excess electrons in the conduction band.
- 39 In the Rutherford scattering experiment, most α -particles passed through the foil undeflected. Which one of the following is a correct conclusion from this result?
 - A The atom is overall neutral.
 - B The nucleus has a positive charge.
 - C Most of the mass of an atom is within the nucleus.
 - **D** The diameter of the nucleus is much less than the diameter of the atom.
- The mass of a beryllium nucleus (${}_{4}^{7}Be$) is 7.01473u. The mass of a proton is 1.00728u while the mass of a neutron is 1.00867u.

What is the binding energy per nucleon of this nucleus?

- A 1.6 MeV
- B 5.4 MeV
- C 9.4 MeV
- D 12.5 MeV

End of Paper

2016 JC2 Preliminary Examination 9646 H2 Physics Paper 1 Solutions

Qn	Ans	Suggested solution Suggested Solution	
1	B	$\Delta v = v + (-u)$	
		Using $D = \rho L = 4\rho L$	
2	D	Using $R = \frac{\rho L}{A} = \frac{4\rho L}{\pi d^2}$	
. 1		Error equation is given by $\frac{\Box \rho}{\rho} = \left(\frac{\Box R}{R}\right) + 2\left(\frac{\Box d}{d}\right) + \left(\frac{\Box L}{L}\right)$	
		$\rho = \begin{pmatrix} R \end{pmatrix} + 2 \begin{pmatrix} d \end{pmatrix} + \begin{pmatrix} L \end{pmatrix}$	
		Thus,	
		$\frac{\Box \rho}{\rho} = \left(\frac{1}{68}\right) + 2\left(\frac{0.1}{5.0}\right) + \left(\frac{1}{25}\right) = 0.0947$	
		$\rho = (68)^{12}(5.0)^{1}(25)^{-0.0047}$	
		$\rho = 0.5 \times 10^{-2} \Omega \text{ m (1 s.f.)}$	
		$\rho = (5.3 \pm 0.5) \times 10^{-2} \Omega \text{ m}$	
3	D	Since terminal velocity is involved, there is significant air resistance acting on the object.	
		The horizontal component of its velocity decreases in the 1 st 3 seconds.	
		The horizontal component of its acceleration is non-zero.	
		The vertical component of its velocity increases in the 1 st 3 seconds.	
		Statement D is correct since terminal valueity is constant	
4	D	Statement D is correct, since terminal velocity is constant. $u_v = 3 \text{ m s}^{-1} \text{ (upwards)}$	
		Use $v_v^2 = u_v^2 + 2a_v s_v$	
		$= 3^2 + 2(-9.81)(-2.4)$	
		$v_y = -7.49 \text{ m s}^{-1} (7.49 \text{ downwards})$	
		$v_x = v_y = 5 \text{ m s}^{-1}$	
		$v = \sqrt{(7.49)^2 + 5^2} = 9 \text{ m s}^{-1}$	
-			
5	С	When the ball is in contact with the surface, resultant vertical force = 0 When it leaves the surface, resultant vertical force = W	
6	В	For elastic collision, the relative speed of approach = relative speed of separation	
		Taking rightwards as positive,	
]		Relative speed of approach	
	<u> </u>	$u_1 - u_2 = 5 - (-2) = 7 \text{ m s}^{-1} = \text{relative speed of separation } (v_2 - v_1)$	

2016 JC2 Preliminary Examination 9646 H2 Physics Paper 1 Solutions

On.	:Ans:	9646 H2 Physics Paper 1 Solutions Suggested Solution
7	C	Before the pivots are translated,
'		taking moments about pivot Y,
		$\left(\frac{L}{4}\right)W = \left(\frac{L}{2}\right)F_x \implies F_x = \frac{W}{2}$
		(4), (2)
		After the pivots are translated,
		taking moments about pivot Y, $\left(\frac{L}{4} + \frac{L}{8}\right)W = \left(\frac{L}{2}\right)F_x' \Rightarrow F_x' = \frac{3W}{4}$
		$\left(\frac{-}{4} + \frac{-}{8}\right)W = \left(\frac{-}{2}\right)F_x' \rightarrow F_x' = \frac{-}{4}$
'		
		Thus, increase in the contact force acting on the plank by support X

		$=F_x'-F_x=\frac{W}{4}$
8	В	Only options B and D have resultant force.
		Taking moments about the centre of the circle, Only options A, B and C have
		resultant torque.
9	В	All the input energy is converted into useful energy in the form of heat in the heater
10	Α	Efficiency of motor = rate of work done in lifting load / input power
		$0.2P = \frac{mgh}{t} = mgv$
		·
		0.2(9.6) = 0.50(9.81)v
		$v = 0.39 \text{ m s}^{-1}$
11	В	The average random kinetic energy of a gas molecule,
		$\left \frac{1}{2}m\langle c^2\rangle\right = \frac{3}{2}kT$
		2"'\" / 2"'
		$\Rightarrow \sqrt{\langle c^2 \rangle} = \sqrt{\frac{3kT}{m}}$
		$\int \sqrt{\sqrt{\sigma}/\sqrt{m}}$
		Since $pV \propto T$, the final temperature will be 3 times the initial temperature.
		$c_{}$ $\sqrt{3T}$
		$\Rightarrow \frac{c_{rms}'}{c_{rms}} = \frac{\sqrt{3T}}{\sqrt{T}}$
		$\Rightarrow c'_{rms} = \sqrt{3}\nu$
12	D	$pV = nRT \rightarrow \frac{1}{p} = \frac{V}{nRT}$
		$p - m = \frac{1}{nRT}$
		Names around of the up Mr. arouliant - 1
		Hence, graph of 1/p vs V: gradient = $\frac{1}{nRT}$
		In original graph, gradient = 0.4 / 4 = 0.1.
		Hence, when n and T are doubled,
		gradient of new graph = $\frac{1}{4}$ x gradient of original graph = 0.025.
		4

2016 JC2 Preliminary Examination 9646 H2 Physics Paper 1 Solutions

Qn	Ans	Suggested solution
13	D	Thermal energy supplied $Q = Pt = mc\Delta\theta$
		$\Rightarrow 1000 \times 180 = 1.5 \times c \times (357 - 300)$
	·	$\Rightarrow c = 2100 \text{ J kg}^{-1} \text{ K}^{-1}$
14	С	V = E - Ir
		gradient = $-r = \frac{3.4 - 1.6}{0.9 - 2.4} = -1.2$
1		$r=1.2 \Omega$
15	D	Resistance is defined as the ratio $\frac{V}{I}$, and not the inverse-gradient of the I-V graph.
72-5-1		The resistance at various points on an I-V graph may either be found by calculating the values of $\frac{V}{I}$ at the particular point or finding the inverse-gradient of the straight
	•	line drawn from origin to that point.
		At about 1.2 V, the I-V graphs for the diode and filament lamp intersect. Hence, they will have the same value of $\frac{V}{I}$ or resistance.
		[B] is incorrect, as the ratio $\sqrt{}$ changes even though it is a straight line graph after 0.8 V. This is because the straight line does not begin from the origin.
		[C] is incorrect as the resistance of the filament is half that of the resistor's at 1.0 V
16	A	$P_A = \frac{120^2}{R} \Rightarrow R_A = 14.4 \Omega$
		$P_B = \frac{240^2}{R} \Rightarrow R_B = 57.6 \Omega$
-486		Since in series circuit, current must be the same across the 2 bulbs. Bulb B will be brighter since it has higher power dissipation $P = I^2R$ (i.e. higher resistance.)
17	С	A At balance point, the p.d. between AB has the same magnitude as the p.d. between CD, not current.
		B The circuit containing E_2 , R and r_2 is closed and hence current flows through CD.
		D If r_2 is zero, p.d. between CD is higher (= E_2). To balance, p.d. between AB must also increase. Hence balance length AB will be longer.
18	В	At the top, the resultant force = $mg + T_1 = mr\omega^2 \rightarrow T_1 = mr\omega^2 - mg$ (1)
		At the bottom, the resultant force = $T_2 - mg = mr\omega^2 \rightarrow T_2 = mr\omega^2 + mg$ (2)
		(2) - (1): $T_2 - T_1 = 2mg$
L	L	(2) (1): 12 11 2:119

PHYSICS DEPARTMENT 2016 JC2 Preliminary Examination 9646 H2 Physics Paper 1 Solutions

factor and	ALCONO DOS ANA PROPRIATORS	9646 H2 Physics Paper 1 Solutions
Qn	Ans	Suggested solution
19	D	Resolve vertically, $T \cos \theta = mg$ (1)
		Resolve horizontally, $T \sin \theta = mr\omega^2$ (2)
		From (1): $T = \frac{mg}{\cos \theta}$
·		From (2): $T = \frac{mr\omega^2}{\sin\theta}$
		mg
20	D	$\frac{GM_{P}M_{Q}}{L^{2}} = M_{P}R\omega^{2} = M_{Q}(L-R)\omega^{2}$
		A: Centripetal force on P.
		B: Centripetal force on Q.
		C: These centripetal forces are provided by gravitational force between P and Q.
21	В	X: $a = \frac{GM}{R^2} = \frac{G\rho(\frac{4}{3}\pi R^3)}{R^2} = \frac{4G\rho R}{3}$
. •		Y: $a_Y = \frac{4G(2\rho)(2R)}{3} = 4a$
22	В	Work done on electron = Fs = area under $F-x$ graph = gain in KE = loss in EPE
		$= (0.20 \times 10^{-12})(3-1) \times 10^{-3}$
		$= 4.0 \times 10^{-16} \text{ J}$
		Change in electric potential energy is negative .
23	С	A: not necessary, as long as the upper plate is at a higher potential than the lower plate.
		R. C. D. the field is uniform, so the force acting on a proton anywhere in the field is the

	Qn	Ans	Suggested solution Suggested Solution
	19	D	Resolve vertically, $T \cos \theta = mg$ (1)
1			Resolve horizontally, $T \sin \theta = mr\omega^2$ (2)
			From (1): $T = \frac{mg}{\cos \theta}$
			From (2): $T = \frac{mr\omega^2}{\sin\theta}$
.			mg
	20	D	$\frac{GM_{P}M_{Q}}{L^{2}} = M_{P}R\omega^{2} = M_{Q}(L - R)\omega^{2}$
			A: Centripetal force on P.
			B: Centripetal force on Q.
			C: These centripetal forces are provided by gravitational force between P and Q.
	21	В	X: $a = \frac{GM}{R^2} = \frac{G\rho\left(\frac{4}{3}\pi R^3\right)}{R^2} = \frac{4G\rho R}{3}$
		-	Y: $a_Y = \frac{4G(2\rho)(2R)}{3} = 4a$
	22	В	Work done on electron = Fs = area under F - x graph = gain in KE = loss in EPE
			$= (0.20 \times 10^{-12})(3-1) \times 10^{-3}$
			$= 4.0 \times 10^{-16} \text{ J}$
			Change in electric potential energy is negative .
	23	С	A: not necessary, as long as the upper plate is at a higher potential than the lower plate.
			B, C, D: the field is uniform, so the force acting on a proton anywhere in the field is the same.
	24	Α	Acceleration of the bouncing ball is not directly proportional to displacement, moreover, there is no equilibrium point.
			For all other options, acceleration is directed towards the equilibrium point, and value changes with displacement. (For SHM, $a = -\omega^2 x$)

2016 JC2 Preliminary Examination 9646 H2 Physics Paper 1 Solutions

Qn-	Ans	9646 H2 Physics Paper 1 Solutions Suggested solution		
25	D´	At equilibrium points, velocity is maximum. At amplitude, velocity is zero.		
		divaction of		
		direction of wave travel		
	•			
		P R		
		P is on its way upwards, hence velocity is positive.		
		. Q is on its way downwards, hence velocity is negative.		
26	Α	At the open ends, the particle is at the anti-node i.e. greatest amplitude		
		When the particle is at the node, it is permanently at rest and its adjacent particles move towards it simultaneously.		
27	С	$d\sin\theta = n\lambda$		
		400 lines per mm implies that distance between lines = $\frac{1}{400}$ mm		
		d = 0.0025 mm = 2.5 x 10 ⁻⁶ m		
		$2.5 \times 10^{-6} \sin \theta = 2(6 \times 10^{-7})$		
		<u>, '</u>		
		$\sin\theta = \frac{2(6\times10^{-7})}{2.5\times10^{-6}} = 0.48$		
		$\theta = 28.7^{\circ}$		
28	Α	Use Fleming's Left Hand Rule, direction of force is perpendicular to current and B-		
		field.		
29	С	Currents travelling in conductors in opposite direction causes repulsion.		
ASF		Since current is sinusoidal, the force should also be sinusoidal.		
		Since it consistently repels, the force should always be positive or negative		
150		(depending on the sign convention used). Option A suggests that sometimes it repels, sometimes attracts, due to a change in signs for <i>F</i> .		
30	С	The iron core should be removed from coil 2 as the soft iron core reinforces the B-		
		field created by coil 1 linking through coil 2. By removing the soft iron core from coil 2, the <i>B</i> -field experienced by coil 2 is reduced, thus the induced e.m.f will also drop in		
-		magnitude.		
		R ₁ should be increased to reduce the current flowing through coil 1, thus reducing		
		the strength of the <i>B</i> -field generated by coil 1.		
31	D	$\Delta \Phi = N \Delta B A = (120)[(-80 - 80) \times 10^{-3}](0.070) = -1.344 \text{ Wb}$		
		$\varepsilon = -\frac{\Delta\Phi}{t} = -\frac{-1.344}{4.0} = 0.336 \text{ V}$		
		t 4.0		

PHYSICS DEPARTMENT 2016 JC2 Preliminary Examination 9646 H2 Physics Paper 1 Solutions

		9646 H2 Physics Paper 1 Solutions			
32	Ans. B	Suggested solution			
32	Ь	$\frac{V_p}{V_s} = \frac{N_p}{N_s} \rightarrow V_P = \frac{N_p V_s}{N_s} = \frac{(100)(2000)}{500} = 400 \text{ V}$			
		$V_{\rm p}I_{\rm p} = P \implies I_{\rm p} = \frac{P}{V_{\rm p}} = \frac{2000}{400} = 5.0 \text{ A}$			
33	В	Supply current $I = \frac{P}{V} = \frac{2000}{240} = 8.33 \text{ A}$			
		Power loss = I^2R = (8.33) ² (1.5 × 10 ³) = 1.04 × 10 ⁵ W			
34	С	Lyman Series has the highest energy, highest frequency and shortest wavelength, ultra-violet.			
		Paschen series has the lowest energy, lowest frequency and longest wavelength, infra-red.			
		Balmer Series is in between the two above, visible light.			
35	Α	Wavelength corresponding to the spikes depends on the target atoms. Hence no change in the wavelength.			
		Since the overall power ($P = VI$) of the electrons beam increases, the overall power of X-ray photons released will increase. Hence intensity increases.			
36	С	A: true. Under reverse-bias, depletion region increases.			
		B: true, when mobile electrons diffuse from n-type to p-type.			
		C: false. There is no field in region A, it is neutral.			
		D: true. Under forward-bias, mobile electrons move from n- to p-type.			
37	С	Monochromatic mean 'one colour' which implies one frequency.			
38	Α	Holes in valence band serve as mobile charge carriers.			
39	D	A: then all and not most α -particles would be undeflected.			
		B: then there should be deflection by electric repulsion.			
		C: then the α -particles would rebound upon collision.			
40	В	⁷ Be has 4 protons and 3 neutrons.			
		Its mass defect, $m = 4(1.00728) + 3(1.00867) - 7.01473 = 0.0404u$			
		Its binding energy, $E = mc^2 = (0.0404)(1.66 \times 10^{-27})(3.00 \times 10^8)^2 = 6.036 \times 10^{-12} \text{ J}$			
		$E = \frac{6.036 \times 10^{-12}}{1.6 \times 10^{-13}} = 37.7 \text{ MeV}$			
		Its binding energy per nucleon = $\frac{37.7}{7}$ = 5.4 MeV			

2016 JC2 Preliminary Examination

Name	Class	16S
PHYSICS Higher 2	· · · ·	9646/02
Structured Questions		26 August 2016
Candidates answer on the Question Paper. No Additional Materials are required.	· •	1 hour 45 min

READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.

Write your **name** and **class** in the spaces provided at the top of this page.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working. Do not use highlighters, glue or correction fluid.

There are **seven** questions in this paper. Answer **all** questions.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1	,	
2		
3		
4		
5		
6		
7		
Total		

Data

speed of light in free space, permeability of free space, permittivity of free space, elementary charge, the Planck constant, unified atomic mass constant, rest mass of electron, rest mass of proton, molar gas constant, the Avogadro constant, the Boltzmann constant, gravitational constant, acceleration of free fall,

Formulae

uniformly accelerated motion,

work done on/by a gas, hydrostatic pressure, gravitational potential,

displacement of particle in s.h.m., velocity of particle in s.h.m.,

mean kinetic energy of a molecule of an ideal gas resistors in series, resistors in parallel,

electric potential,

alternating current / voltage, transmission coefficient,

radioactive decay decay constant

$$c = 3.00 \times 10^8 \,\mathrm{m \ s^{-1}}$$

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H}\,\mathrm{m}^{-1}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F m^{-1}} = (1/(36\pi)) \times 10^{-9} \,\mathrm{F m^{-1}}$$

$$e = 1.60 \times 10^{-19} \,\mathrm{C}$$

$$h = 6.63 \times 10^{-34} \,\mathrm{J s}$$

$$u = 1.66 \times 10^{-27} \text{ kg}$$

$$m_{\rm e} = 9.11 \times 10^{-31} \, \rm kg$$

$$m_{\rm p} = 1.67 \times 10^{-27} \, \rm kg$$

$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$$

$$k = 1.38 \times 10^{-23} \,\text{J K}^{-1}$$

$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

$$g = 9.81 \,\mathrm{m \, s^{-2}}$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$W = p \Delta V$$

$$p = \rho gh$$

$$\phi = -\frac{Gm}{r}$$

$$x = x_0 \sin \omega t$$

$$v = v_0 \cos \omega t$$

$$V = \pm \omega \sqrt{(x_o^2 - x^2)}$$

$$E = \frac{3}{2}kT$$

$$R = R_1 + R_2 + \dots$$

$$1/R = 1/R_1 + 1/R_2 + \dots$$

$$V = \frac{Q}{4\pi\varepsilon_o r}$$

$$x = x_0 \sin \omega t$$

$$T \propto \exp(-2kd)$$

where
$$k = \sqrt{\frac{8\pi^2 m(U - E)}{h^2}}$$

$$x = x_0 \exp(-\lambda t)$$

$$\lambda = \frac{0.693}{t_{1/2}}$$

1.	(a)	Discuss whether the resu direction as its acceleration	dy may or may r	not be in the same
	î.			
				[1]

(b) A car is travelling along a road that has a uniform downhill gradient as shown in Fig. 1.1.

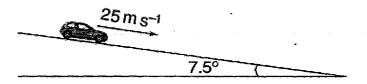
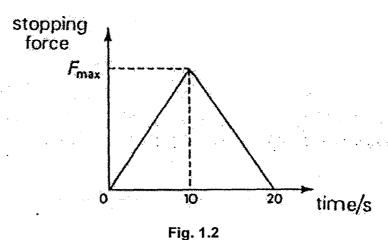


Fig. 1.1

The car has a total mass of 850 kg. The angle of the road to the horizontal is 7.5° . The car is travelling at a constant speed of 25 m s^{-1} .


- (i) The driver then applies the brakes to reduce its speed to 12.5 m s⁻¹. The constant stopping force, *F* resisting the motion of the car is 1620 N.
 - 1. Show that the deceleration of the car with the brakes applied is 0.63 m s^{-2} .

Calculate the distance that the car travels during the deceleration to a speed of 12.5 m s⁻¹.

distance = m [2]

[2]

(ii) Having descended the slope, the car travels along a horizontal straight section of the road at a speed of 12.5 m s⁻¹. In order to stop the car completely, the brakes are applied again so that the stopping force *F*, increases steadily to a maximum and then decreases to zero as shown in Fig. 1.2.

Calculate

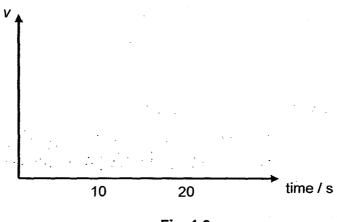
1. the change in momentum of the car between t = 0 s and t = 20 s,

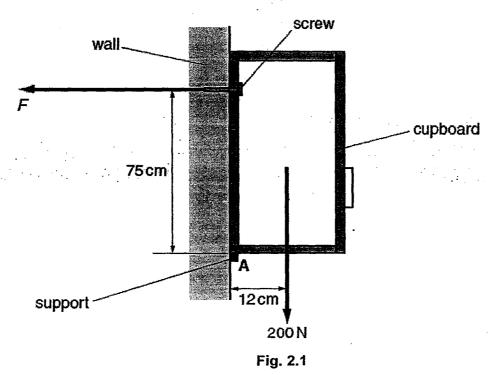
change of momentum = N s [1]

2. the value of F_{max} .

 $F_{max} =$ N [2]

3. On Fig. 1.3, sketch a graph to show the variation with time, *t* of the velocity, *v* of the car.




Fig. 1.3

[2]

(iii)	Explain why the braking process in (b)(ii) would seen more gentle stop than the braking process in (b)(i) with for the same duration that the force is exerted.	
	·	

[2]

2. Fig. 2.1 shows a kitchen cupboard securely mounted to a vertical wall. The cupboard rests on a support at A.

The total weight of the cupboard and its contents is 200 N. The line of action of its weight is at a distance of 12 cm from A. The screw securing the cupboard to the wall is at a vertical distance of 75 cm from A.

(a) The direction of the force F provided by the screw on the cupboard is horizontal. Show that F is 32 N.

[1]

(b) (i) On Fig. 2.1, sketch the force provided by the support on the cupboard. Label this force *R*. [1]

00404100 Deelles Essent D0/0040

		(ii)	Hence or otherwise, determine the magnitude of R.
. F. S			
•			
			R = N [2]
, ty	(c)	State is em	and explain how your answer to (b)(ii) would change, if at all, if the cupboard apty.
			[2]

3. (a) State the First Law of Thermodynamics.

[2]

(b) 0.20 moles of an ideal gas is trapped in a closed cylinder sealed by a piston at an initial temperature of 300 K and initial pressure p. The gas undergoes a cycle of changes A → B → C → A as shown in Fig. 3.1 below.

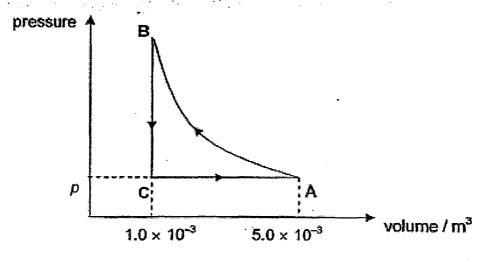


Fig. 3.1

From **A** to **B**, the gas is compressed isothermally at a temperature of 300 K during which 800 J of work is done on the gas.

From B to C, the gas is cooled at a constant volume of 1.0×10^{-3} m³ till its pressure returns to p.

From ${\bf C}$ to ${\bf A}$, the gas expands at constant pressure p.

(i) Calculate the pressure p.

pressure p = Pa [2]

• •	(i	ii)	State and explain whether the temperatures at A and C are the same	1 e .	
eq.					
	e.				[2]
	(i	iii)	Calculate the work done on the gas during the change from C to A.	. :	
			•		
			•		
			work done on the gas =	J	[2]
					L 3
	(i	iv)	Calculate the net heat supplied to the gas in one complete cycle.		ν,
<u></u>			•		
			net heat supplied to the gas =	J	[2]

4. (a) In order to investigate the photoelectric effect, a student set up the apparatus illustrated in Fig. 4.1. When the potential difference V is varied it is found that the photoelectric current varies as shown by curve A in Fig. 4.2.

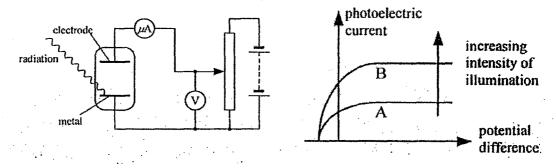


Fig. 4.1 Fig. 4.2

(i)	Explain why, for curve A, the photoelectric current reaches a maximuvalue no matter how large V is made.	mı
		[0]

(ii) The intensity of illumination is then increased and the experiment repeated to obtain curve B.

Explain why the maximum photoelectric current is increased.

Dete	·	3 × 10 ⁻¹⁰ A was observed.		
(i)	the rate of emission of phot	oelectrons,		
		rate of emission =	s ⁻¹ [1]
(ii)	in ejecting an electron from	urce, assuming that 1 in 2500 the surface.		_
		·		
	·	i,		

i.	Stror	ntium-90 decays with the emission of a β -particle to form Yttrium-90. The decessented by the equation	ay is
		anted by the equation ${}^{90}_{38}Sr \rightarrow {}^{90}_{39}Y + {}^{0}_{-1}e + 0.55 \text{ MeV}$ If-life of Strontium-90 is 27.7 years. Define $half$ -life.	
	The	half-life of Strontium-90 is 27.7 years.	
	(a)	Define half-life.	
	•		[1]
	(b)	What is meant by binding energy of a nucleus?	
			[1]
	(c)	Suggest, with a reason, which nucleus ${}_{0}^{90}Sr$ or ${}_{0}^{90}Y$ has a greater binding end	erav.
	• •	38 39	
		· · · · · · · · · · · · · · · · · · ·	[2]
	(d)	At the time of purchase of a Strontium-90 source, the activity is 3.7×10^6 Bq.	

Calculate, for this sample of Strontium,

(i)

the initial number of atoms,

1	(ii)	the	initial	mass
. 1	*** <i>!</i>	uic	minai	111000

(iii) $\frac{A}{A_o}$, where *A* is the activity of the sample 5.0 years after purchase and A_o is the initial activity.

$$\frac{A}{A_o} =$$
 [2]

6. For thousands of years, Man has studied the night sky and some ancient buildings provide evidence of careful and patient astronomical observations by people of many different cultures. As instrumentation has improved, so has the precision with which astronomical observations could be made. Between 1576 and 1597, Brahe made comprehensive observations of planetary positions and, on his death, these records became available to Kepler.

Kepler was able to interpret the observations and deduced three laws, one of which had a great impact on latter discoveries. He deduced that, for a circular orbit of a planet around the Sun of mass M, if T is the period of orbit and r is the radius of the orbit, then

$$T^2 \propto r^3$$

As a result of Kepler's work, Newton formulated the law of gravitation.

(a) By relating the gravitational force on a planet to the centripetal acceleration it causes, show that, for a circular orbit,

$$T^2 = \frac{4\pi^2 r^3}{GM}$$

(b) The planet Jupiter has a number of moons. Data for some of these are given in Fig. 6.1.

[2]

Moon	Period T / days	mean distance from centre of Jupiter <i>r I</i> 10 ⁹ m	log₁₀ (T / days)	log ₁₀ (<i>r /</i> m)
Sinope	758	23.7	2.88	10.37
Leda	239	11.1	2.38	10.05
Callisto	16.7	1.88		
Lo	1.77	0.422		
Metis	0.295	0.128	-0.53	8.11

Fig. 6.1

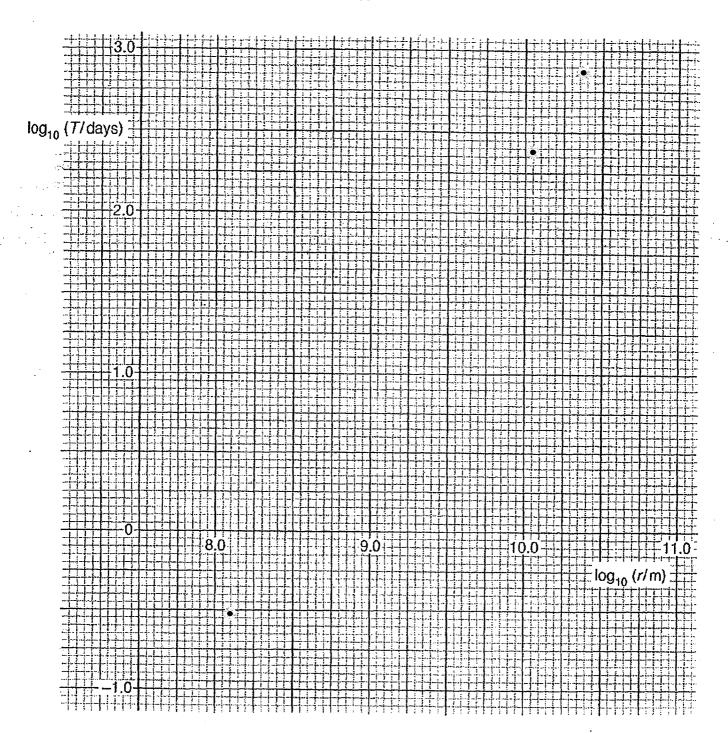


Fig. 6.2

	(i)	Complete Fig. 6.1 by calculating values for log_{10} ($T/days$) and log_{10} (r/m).	
		[1]	
	•		
	(ii)	On the axes of Fig. 6.2, plot a graph of log_{10} ($T/days$) against log_{10} (r/m).	
		[2]	
(c)	(i)	Determine the gradient of the graph in Fig. 6.2.	
	• • •		:
		·	
		gradient - [2]	
		gradient = [2]	
	/::\	Homes discuss whether the data in Fig. C.d. compart the relation circum in (a)	
	(ii)	Hence discuss whether the data in Fig. 6.1 support the relation given in (a).	
		[2]	
		·	
(a)\	Oha	aminations about that the many Commands white hunter with a manifest of	•
(d)	7.16	ervations show that the moon Ganymede orbits Jupiter with a period of days. Use the graph of Fig. 6.2 to estimate the orbital radius of Ganymede.	

orbital radius =

m [2]

	surface. Comment on the	accuracy of this statement.
	and the state of t	
		•
		[2]
	•	
7)		oh of Fig. 6.2 could be used to check data on the orbital oons of another planet (e.g. Saturn).
f)		
ħ		

4.

It is recommended that you spend about 30 minutes on this question.

7 Fig. 7.1 illustrates a bow used in archery competitions.

Fig. 7.1

A designer of bows is attempting to maximise the efficiency of his bow. This means that as much of the potential energy stored in the bow as possible is converted to the kinetic energy of an arrow.

Some preliminary experiments are carried out with the bow when the centre of the string is moved through a distance x by a force F as shown in Fig. 7.2.

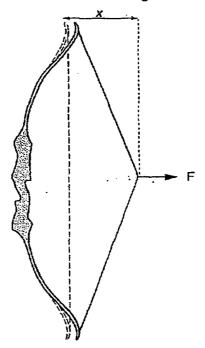


Fig. 7.2

These experiments indicate that x is not proportional to F.

The efficiency of the bow may be defined as

efficiency =
$$\frac{\text{kinetic energy of an arrow}}{\text{potential energy of the bow}}$$

Design a laboratory experiment to investigate how the efficiency varies with the distance *x* moved by the centre of the string.

You should draw diagram(s) to show the arrangement of your apparatus. In your account, you should pay attention to

- (a) the identification and control of variables,
- (b) the equipment you would use,
- (c) the procedure to be followed,
- (d) determine the potential energy stored in the bow just before the arrow is released,
- (e) determine the kinetic energy of the arrow after the string is released,
- (f) any precautions that you would be taken to improve the accuracy and safety of the experiment.

Diagram

			•	
manufacture of the second seco			·	
	• ,	7.20		
		,		
		- •		
		•		• • • • • • • • • • • • • • • • • • • •
				•
	1			
•				
•				
			,	
		•		
		4		
			• .	
			=113211 - AANUA	

•
•
•
•
·
·
·
•

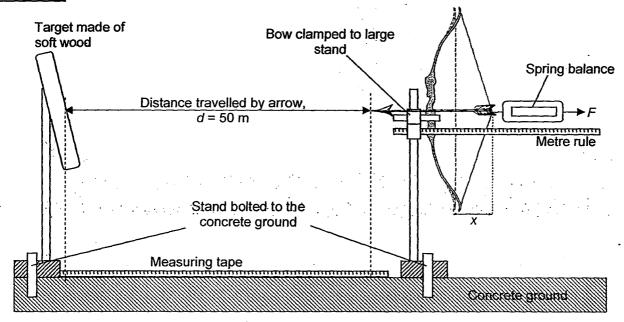
End of Paper	
	[12]
	Daniel Da
	•
	·

PHYSICS DEPARTMENT

2016 JC2 Preliminary Examination 9646 H2 Physics Paper 2 Suggested Solutions

ាលិ	Suggested solution	Reneric
1(a)	Based on Newton's 2 nd law of motion, the resultant force must be in the same	
	direction as its acceleration because the change of momentum occurs in the	[1]
(b)(i)4	direction of the resultant force. $F_R = 1620 - (850)(9.81)(\sin 7.5^\circ) = 531.6 \text{ N}$	£43
(b)(i)1.	By Newton's 2^{nd} law of motion,	[1] – ans
1 to 1		
	$a = \frac{F}{m} = \frac{531.6}{850} = 0.63 \ m \ s^{-2}$	
<u> </u>	$v^2 = u^2 + 2as$	[1] – sub
2.		
	$s = \frac{12.5^2 - 25^2}{2(-0.63)}$	
	2(-0.63)	[1] - sub
	= 372 m	[1] – ans
(ii)1.	$\Delta p = mv - mu$	
	$=850(0-12.5)=-1.06\times10^4$ Ns	[1] - ans
2.	An [E dt	[1] ~ a115
	$\Delta p = \int F dt$	
	$1.06 \times 10^4 = \frac{1}{2} F_{\text{max}}(20)$	[1] sub
	<u>-</u>	[1] - ans
	$F_{\text{max}} = 1060 \text{ N}$	
3.	\boldsymbol{v}_{lack}	[1] - shape
		For 0-10s, 10s-20s
		-
		[-1] —
		start/end line not
		horizontal
'P		
	10 20 time / s	
(iii)	The braking process in (b)(ii) gradually decreases from a maximum to zero	[1]
	whereas the braking process in (b)(i) is constant and decreases to zero	
	abruptly at the end of the journey.	[1]
2(2)	Taking moments about A,	
L(a)		
	$F = \frac{200(12)}{75} = 32 \text{ N}$	[1] – sub
L		L

(b)(i)		
(=)(-)	screw	[1]
	wall	
	F R	
	cupboard	
	75 cm 75 cm	
	A A	
	support 12cm	
	200 N	
(ii)	$R_x = F = 32 \text{ N}$	
	$R_{y} = W = 200 \text{ N}$	
	$R = \sqrt{32^2 + 200^2}$	[1] sub
	= 203 N	[1] - sub [1] - ans
(c)	The force R will decrease in order to balance the decrease in the clockwise	[1]
and the second second	moment due to the weight of the cupboard.	[1]
3(a)	The First Law of Thermodynamics states that the increase in internal energy of a	[2] or zero
3(a)	The First Law of Thermodynamics states that the increase in internal energy of a system is equal to the sum of heat supplied to the system and work done on the system	[2] or zero
3(a) (b)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$	[2] or zero
	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$	[1] sub
	system is equal to the sum of heat supplied to the system and work done on the system.	
(b)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same. The product of pV at A and C are not same.	[1] sub [1] ans [1] state
(b)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same . The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$	[1] sub [1] ans
(b)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same . The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$	[1] sub [1] ans [1] state [1] expl
(b)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same. The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$	[1] sub [1] ans [1] state
(b)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same . The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$	[1] sub [1] ans [1] state [1] expl [1] sub
(b)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same. The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$	[1] sub [1] ans [1] state [1] expl
(b)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same. The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$ $\therefore \text{ Work done on the gas } = -399 \text{ J}$ $\Delta U = Q + W$ $0 = Q + (800 - 399)$	[1] sub [1] ans [1] state [1] expl [1] sub [1] ans
(b)(i) (ii)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same . The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$ $\therefore \text{ Work done on the gas } = -399 \text{ J}$ $\Delta U = Q + W$ $0 = Q + (800 - 399)$ $\Rightarrow Q = -401 \text{ J}$	[1] sub [1] ans [1] state [1] expl [1] sub
(b)(i) (ii)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same. The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$ $\therefore \text{ Work done on the gas } = -399 \text{ J}$ $\Delta U = Q + W$ $0 = Q + (800 - 399)$	[1] sub [1] ans [1] state [1] expl [1] sub [1] ans
(b)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same . The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$ $\therefore \text{ Work done on the gas} = -399 \text{ J}$ $\Delta U = Q + W$ $0 = Q + (800 - 399)$ $\Rightarrow Q = -401 \text{ J}$ Heat supplied to the gas = -401 J Electrons emitted from the metal will be collected at electrode for positive values	[1] sub [1] ans [1] state [1] expl [1] sub [1] ans
(b)(i) (ii) (iv)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same . The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$ $\therefore \text{ Work done on the gas} = -399 \text{ J}$ $\Delta U = Q + W$ $0 = Q + (800 - 399)$ $\Rightarrow Q = -401 \text{ J}$ Heat supplied to the gas = -401 J Electrons emitted from the metal will be collected at electrode for positive values of V . Since the number of electrons emitted per unit time is constant	[1] sub [1] ans [1] state [1] expl [1] sub [1] ans [1] ans
(b)(i) (ii) (iv)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same. The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$ $\therefore \text{ Work done on the gas } = -399 \text{ J}$ $\Delta U = Q + W$ $0 = Q + (800 - 399)$ $\Rightarrow Q = -401 \text{ J}$ Heat supplied to the gas = -401 J Electrons emitted from the metal will be collected at electrode for positive values of V . Since the number of electrons emitted per unit time is constant (intensity remains constant), the rate of flow of electrons is constant thus	[1] sub [1] ans [1] state [1] expl [1] sub [1] ans
(b)(i) (ii) (iv)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same . The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$ $\therefore \text{ Work done on the gas} = -399 \text{ J}$ $\Delta U = Q + W$ $0 = Q + (800 - 399)$ $\Rightarrow Q = -401 \text{ J}$ Heat supplied to the gas = -401 J Electrons emitted from the metal will be collected at electrode for positive values of V . Since the number of electrons emitted per unit time is constant	[1] sub [1] ans [1] state [1] expl [1] sub [1] ans [1] ans
(b)(i) (ii) (iv) 4(a)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same. The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$ $\Delta U = Q + W$ $0 = Q + (800 - 399)$ $\Rightarrow Q = -401 \text{ J}$ Heat supplied to the gas = -401 J Electrons emitted from the metal will be collected at electrode for positive values of V . Since the number of electrons emitted per unit time is constant (intensity remains constant), the rate of flow of electrons is constant thus current does not continue to increase. The increase in V only increases the acceleration of the electrons but not its rate of emission from the metal.	[1] sub [1] ans [1] state [1] expl [1] sub [1] ans [1] ans [1] [1] ans
(b)(i) (ii) (iv)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same. The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$ $\therefore \text{ Work done on the gas} = -399 \text{ J}$ $\Delta U = Q + W$ $0 = Q + (800 - 399)$ $\Rightarrow Q = -401 \text{ J}$ Heat supplied to the gas = -401 J Electrons emitted from the metal will be collected at electrode for positive values of V . Since the number of electrons emitted per unit time is constant (intensity remains constant), the rate of flow of electrons is constant thus current does not continue to increase. The increase in V only increases the acceleration of the electrons but not its rate of emission from the metal. The maximum photoelectric current is dependent on the rate of emission of	[1] sub [1] ans [1] state [1] expl [1] sub [1] ans [1] ans [1] ans [1] [1]
(b)(i) (ii) (iv) 4(a)(i)	system is equal to the sum of heat supplied to the system and work done on the system. Using $pV = nRT$ $p = \frac{nRT_A}{V_A} = \frac{0.20 \times 8.31 \times 300}{5.0 \times 10^{-3}} = 9.97 \times 10^4 \text{ Pa}$ The temperature at A and C is not the same. The product of pV at A and C are not same. $p \times 1.0 \times 10^{-3} \neq p \times 5.0 \times 10^{-3}$ Work done by gas = $p \Delta V$ $= 9.97 \times 10^4 \times (5.0 \times 10^{-3} - 1.0 \times 10^{-3})$ $= 399 \text{ J}$ $\Delta U = Q + W$ $0 = Q + (800 - 399)$ $\Rightarrow Q = -401 \text{ J}$ Heat supplied to the gas = -401 J Electrons emitted from the metal will be collected at electrode for positive values of V . Since the number of electrons emitted per unit time is constant (intensity remains constant), the rate of flow of electrons is constant thus current does not continue to increase. The increase in V only increases the acceleration of the electrons but not its rate of emission from the metal.	[1] sub [1] ans [1] state [1] expl [1] sub [1] ans [1] ans [1] ans


(b)(i)	The current,	econd	`			
	<i>→</i> 1	$n = \frac{1}{2} = \frac{1}{2}$	$\frac{4.8 \times 10^{-10}}{1.6 \times 10^{-19}} = 3.0 \times 10^9 \text{ s}^{-1}$			[1] - ans
(ii)		<u>е</u> М	hf			
(,	The intensity	y, $i = \frac{1}{2}$	<u>"</u>			
			number of photons incident per second = 2	500 <i>n</i>		[1] - N
	and	A = a	area illuminated			relate to n
	\rightarrow	$i = \frac{N}{N}$	$\frac{hc}{\lambda} = \frac{2500(3.0 \times 10^9)(6.63 \times 10^{-34})(3.0 \times 10^8)}{(24 \times 10^{-6})(410 \times 10^{-9})}$	<u>}</u>		[1] - sub
	,	A	λ (24×10 ⁻⁶)(410×10 ⁻⁹)			[.] 000
			= 0.152 W m ⁻²			[1] - ans
5(0)	Half life of a	a nadia a	china mudida ia definad as the aversas time	a dalaa Saa	belf of	F/43
5(a)			ctive nuclide is defined as the average time of radioactive nuclei in a sample to decay		nair or	[1]
(b)			a nucleus is the minimum energy require		the	[1]
. ,			vidual nucleons.			
(c)	90 99 has a gi	reater b	inding energy.		•	[1]
		elease (of energy, so the product has greater bind	ing energy	(more	[1]
(-1)(:)	stable).					F43 0
(d)(i)	$\lambda = \frac{0.693}{4} = \frac{1}{2}$	27.7(20	$\frac{0.693}{5)(24)(3600)} = 7.93 \times 10^{-10} \text{ s}^{-1}$			[1] - λ value
	$A = \lambda N \rightarrow I$	$N = \frac{A}{\lambda} =$	$\frac{3.7 \times 10^6}{7.93 \times 10^{-10}} = 4.66 \times 10^{15}$			[1] - ans
(ii)	90 g of stror	ntium co	ontains 6.02 × 10 ²³ atoms.			
	mass of this	sample	$e ext{ of strontium} = \frac{4.66 \times 10^{15}}{6.02 \times 10^{23}} (90 \times 10^{-3})$			rat out
		, campie	6.02×10 ²³ (05)			[1] - sub [1] - ans
(iii)	·		= 6.97 × 10 · kg	· , - · · · · -		1.,
(111)	Number of h	nalf-live,	$n = \frac{5}{27.7} = 0.18$			
			21.1			[1] - sub
	$\frac{A}{A} = \left(\frac{1}{2}\right)^n =$	- -	= 0.88			[1] - ans
	A_0 (2)	(2)				
6(a)	Gravitation	al for	e acting on the planet provides the	centripe	tal force	[1] -
	necessary fo	or the p	lanet to move in a circular orbit.	•		concept
	$\frac{GMm}{r^2} = mra$	ω^2				
	-					[1] -
	$\frac{GM}{r^3} = \left(\frac{2\pi}{T}\right)$		}			working
	r (r)	,				
	$\frac{GM}{r^3} = \frac{4\pi^2}{T^2}$ $T^2 = \frac{4\pi^2 r^3}{24\pi^2}$)			
	1^{-1}	•				
	$T^2 = \frac{4\pi T}{GM}$					
(b)(i)		Period	mean distance from centre of Jupiter	log ₁₀	log ₁₀	
49	7	r/days │	r/ 10 ⁹ m	(T/days	(<i>r</i> /m)	
***	Circa	750	22.7)	10.27	
	Sinope Leda	758 239	23.7 11.1	2.88	10.37 10.05	
		16.7	1.88	-1.22	9.27	
		1.77	0.422	0:25	8.63	All_correct
L	Metis (0.295	0.128	-0.53	8.11	values [1]

The section of the property

(ii)	3.0 (s/sp) (2.0) (1.	[1] All points plotted correctly. [1] best fit line
(c)(i)	Gradient of the graph = $\frac{3.0-0.0}{10.45-8.45}$ = 1.5	[1] sub [1] ans
(ii)	The data support the relation in (a).	[1] ans
(4)	From $T^2 = \frac{4\pi^2 r^3}{GM}$ Let $k = \frac{4\pi^2}{GM}$ which is a constant $T^2 = kr^3$ $2 \lg T = \lg k + 3 \lg r$ $2 \lg T = 3 \lg r + \lg k$ $\lg T = 1.5 \lg r + \frac{1}{2} \lg k$ (1) Since a straight line graph is obtained and the gradient of the graph is equal to 1.5 which is consistent with the equation (1), thus the data support the relation in (a).	[1] expl
(d)	Given period $T = 7.16$ days, \Rightarrow lg $(7.16) = 0.85$. From the graph, lg $r = 9.025$ Thus the orbital radius of Ganymede = $10^{9.025}$ = 1.06×10^9 m	[1] value
(e)	Given period $T = 16.2$ hours = 0.675 days \Rightarrow lg $(0.675) = -0.17$ From the graph, lg $r = 8.35$ Thus the orbital radius of Thebe = $10^{8.35}$ = 2.24×10^8 m Thus the distance from the centre of the Jupiter to Thebe is 224 thousand	[1] working
	kilometres instead of the same distance above the surface of the Jupiter. The statement is inaccurate .	[1] statement
(f)	The graph of Fig. 6.2 cannot be used to check data on the orbital radii and periods of the moons of another planet such as Saturn because it's mass is different from the mass of Jupiter.	[1]

Suggested solution to Planning

Diagram:

Variables:

Independent variable: distance, xDependent variable: efficiency, η

Controlled variables: 1. Point of application of the pulling force

2. Mass of arrow

Procedures:

Set up the apparatus as shown in the diagram.

(Type of apparatus used to measure/ vary the variables)

- 2. The **distance** *x* is measured using a <u>metre rule</u> which is clamp horizontally next to the bow for easy measurement.
- 3. The **force** *F* required to stretch the string a distance *x* is measured using a **spring balance** *l* **newtonmeter** by hooking it to the middle of the string and pulling on it.
- 4. The **distance** *d* travelled by the arrow to the target is set at 50 m, measured using a <u>measuring</u> <u>tape</u>. This distance is measured from the tip of the arrow to the middle of the target.
- 5. The mass of the arrow, m, is measured using a mass balance.
- 6. The **time taken** *t* for the arrow to travel distance *d* is measured using a **stopwatch**.

- 7. To calculate the potential energy of the bow E_p :
 - a. Starting from a small value of x, stretch the string of the bow, and record x.
 - b. Measure force F using the spring balance and record F.
 - c. Repeat (a) and (b) for increasing values of x.
 - d. Plot a graph of F against x, and draw the best fit curve.
 - e. The potential energy E_P of the bow when the string is stretched a distance x is given by, E_P = area under the F-x graph.

(How to vary and measure the independent variable)

- 8. Mount the arrow in the bow and pull the string back a distance x.
- 9. Measure and record the value of x.

(Measuring/ Calculating the dependent variable)

- 10. Aim the arrow at the centre of the target and release the arrow. Measure and record the time of flight *t*.
- 11. Repeat steps (8) to (10) to obtain an average value of t.
- 12. Calculate the speed of the arrow, $v = \frac{\text{distance}}{\text{time}} = \frac{d}{t_{average}}$
- 13. Calculate the kinetic energy of the arrow, $E_K = \frac{1}{2}mv^2$. Record this value.
- 14. Calculate the potential energy E_P of the bow. Record this value.
- 15. Calculate the efficiency of the bow, $\eta = \frac{E_K}{E_P}$.
- 16. Repeat steps (8) to (15) using other values of x.

Analysis

- 1. Assume that η and x are related by the equation : $\eta = kx^n$
- 2. Ig $\eta = n \lg x + \lg k$
- 3. Plot a graph of $\mathbf{Ig} \eta$ against $\mathbf{Ig} x$.
- 4. The relationship is valid if a <u>straight line graph</u> is obtained, where n = gradient of the graph and $\log k = \text{intercept}$.

Safety Precautions

- 1. Ensure that the shooting area is cleared of people before shooting the arrow.
- 2. Wear protective eye-wear and arm guards in case the string breaks.
- 3. Arrow should be aimed only at target.
- 4. Target should be made from soft materials such as cork or Styrofoam to reduce chances of arrows being deflected in other directions.

Steps taken to produce reliable results

- Distance from the arrow to the target, d should be large, i.e. greater than 25 m, to ensure the time of flight t is adequately long to be measured on a stopwatch with acceptable percentage uncertainty.
- 2. Perform the experiment in an enclosed area with no wind or neglect measurements if wind is detected during experiment.

Suggested mark scheme to Planning Question

Diagram (2) 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	[0]
Good choice of apparatus and a clearly labeled diagram.		
- Bow properly clamped at the centre to a fixed object/mass - Labelled distance travelled by arrow to target - Position of centre of bow and target should be about the same height	D1	
Procedure.	- 1	:-[e];;
Mention of apparatus used for different measurement / Determination of kinectic energy and stored potential energy	٠	
- Force F is measured using newton meter / spring balance and pulled horizontally.	P1	
- Distance x is measured with a metre rule	P2	
- Measure d using measuring tape and time t using stopwatch	P3	
- Measure mass of error <i>m</i> using electronic balance	P4	
- Determine kinetic energy of arrow, $E_{K} = \frac{1}{2}mv^{2}$ and $v = \frac{\text{distance}}{\text{time}} = \frac{d}{t_{average}}$.	P5	
- Determine stored potential energy E_P = area under F - x graph [Do not accept answers based on Hooke's law]	P6	
Control of variables	77.77	• [1]
Point of application of the pulling force	C1	
2. Mass of arrow		
Note: minus [1] if dependent or independent variable is stated wrongly		
Analysis a state of the state o	100 A	. [1]E
- details of derived quantities to be calculated.	A1	
Plot $\lg \eta$ vs $\lg x$, y-intercept = $\lg k$, gradient = n must be included to be awarded [1] mark		
Safety Precaution	930 1 T	[1]
1. Ensure that the shooting area is cleared of people before shooting the arrow.		
2. Wear protective eye-wear and arm guards in case the string breaks.	S1	
3. Arrow should be aimed only at target.	31	
4. Target should be made from soft materials such as cork or Styrofoam to reduce chances of arrows being deflected in other directions.		

	i iyo wa Naser	٠.			
Any additional deaths	en e				[2]
1. Distance from the arrow to the target, <i>d</i> should be to ensure the time of flight <i>t</i> is adequately long to be me acceptable percentage uncertainty.	arge, i.e. (easured o	greater n a sto	than 25 m pwatch with	AD1	
2. Perform the experiment in an enclosed area measurements if wind is detected during experiment.	with no	wind	or neglec	AD2	

2016 JC2 Preliminary Examination

16S	lass	Cla			9	Name
9646/03				 		PHYS Higher
ptember 2016	13 Se			ions	Structured Question	.
2 hours	• • • • • • • • • • • • • • • • • • • •	. •	•		•	•
	;	. :	 aper.		lates answer on the ditional Materials are	

READ THESE INSTRUCTIONS FIRST

Do not open this booklet until you are told to do so.

Write your **name** and **class** in the spaces provided at the top of this page.

Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams, graphs or rough working. Do not use paper clips, highlighters, glue or correction fluid.

The use of an approved scientific graphic calculator is expected where appropriate.

Section A

Answer all questions.

Section B

Answer any two questions.

You are advised to spend about one hour on each section.

At the end of the examination; fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1	•		
2			
3			
4			
5			
6			
7			
8			
Total			

Data

speed of light in free space, permeability of free space, permittivity of free space, elementary charge, the Planck constant, unified atomic mass constant, rest mass of electron, rest mass of proton, molar gas constant, the Avogadro constant, the Boltzmann constant, gravitational constant, acceleration of free fall,

Formulae

uniformly accelerated motion,

work done on/by a gas, hydrostatic pressure, gravitational potential,

displacement of particle in s.h.m., velocity of particle in s.h.m.,

mean kinetic energy of a molecule of an ideal gas
resistors in series,
resistors in parallel,

electric potential,

alternating current / voltage, transmission coefficient,

radioactive decay decay constant

$$c = 3.00 \times 10^8 \,\mathrm{m \ s^{-1}}$$

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H m^{-1}}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F m^{-1}} = (1/(36\pi)) \times 10^{-9} \,\mathrm{F m^{-1}}$$

$$e = 1.60 \times 10^{-19} C$$

$$h = 6.63 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$$

$$u = 1.66 \times 10^{-27} \text{ kg}$$

$$m_{\rm e} = 9.11 \times 10^{-31} \, \rm kg$$

$$m_{\rm p} = 1.67 \times 10^{-27} \, \rm kg$$

$$R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$$

$$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$$

$$k = 1.38 \times 10^{-23} \,\mathrm{J \, K^{-1}}$$

$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

$$g = 9.81 \text{ m s}^{-2}$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$W = p \Delta V$$

$$p = \rho g h$$

$$\phi = -\frac{Gm}{r}$$

$$x = x_0 \sin \omega t$$

$$V = V_0 \cos \omega t$$

$$V = \pm \omega \sqrt{(x_0^2 - x^2)}$$

$$E = \frac{3}{2}kT$$

$$R = R_1 + R_2 + \dots$$

$$1/R = 1/R_1 + 1/R_2 + \dots$$

$$V = \frac{Q}{4\pi\varepsilon_o r}$$

$$x = x_0 \sin \omega t$$

$$T \propto \exp(-2kd)$$

where
$$k = \sqrt{\frac{8\pi^2 m(U - E)}{h^2}}$$

$$x = x_o \exp(-\lambda t)$$

$$\lambda = \frac{0.693}{t_{u2}}$$

Section A

Answer all the questions in this Section.

1. Fig. 1.1 below shows a frictionless toy runway. Upon release from point A, Car 1 of mass 0.100 kg travels down a slope, and moves round a loop of radius r = 0.25 m, passing through points B and C.

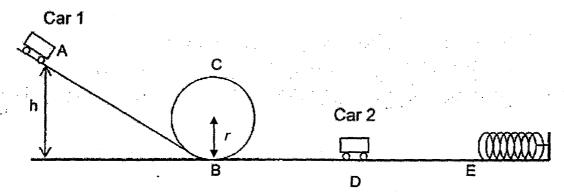


Fig. 1.1 (not drawn to scale)

(a) Show that the minimum speed of Car 1 at point C in order to stay in contact with the runway is 1.6 m s⁻¹.

[2]

(b) Hence or otherwise, calculate the minimum height *h* at point A in order for Car 1 to remain in contact with the runway at point C.

h = m [2]

	(c)	towa	1 moves dow ards a station 2 at point D.							
			n collision, the							E at ·
		Dete	ermine		· .					
		(i)	the speed v	,						
talian kangan Medi Terlebahan Medi										
				* *					. .	
					. •		v =		m s ⁻¹	[2]
		(ii)	the maximu	m compi	ression of th	ne spring b	ouffer wher	the cars co	llide into	it.
						. •				
					maximum	compressi	on =	MANAGE AND	m	[2]
	(d)		e and explain		e answer in	(c)(ii) will	change if	the runway	from poir	nts D
										•
								·		[1]
•								THE STATE OF THE S		•

11C 2046 0046 0046/162 Proling France D2/04

2. (a) Define electric potential.

36

[1]

(b) Two point charges P and Q, each of mass m=24.5 g are separated by a horizontal distance of 30 mm as shown in Fig. 2.1. P has a charge of +40 μ C and Q has a charge of -40 μ C.

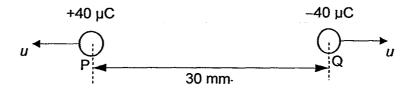


Fig. 2.1

(i) The horizontal distance from P towards Q is r. On Fig. 2.2, sketch the variation with r of the electric potential V due to both point charges P and Q.

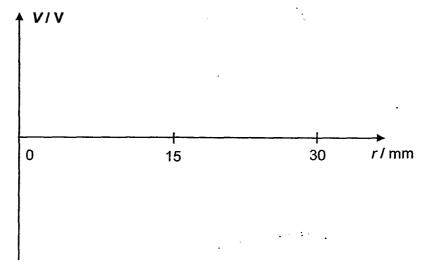
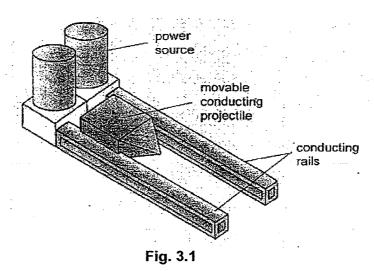



Fig. 2.2

(ii)	Cha <i>u</i> so	rges P and Q are that they eventua	projected away from e ally just reach infinity.	ach other with an i	nitial speed					
	Dete	Determine								
	1.	the initial electri	c potential energy of Q,							
		• • • • • • • • • • • • • • • • • • • •			•					
		.•			. •					
	•	Electri	ic potential energy =		J [2]					
			***************************************		-					
	2.	the initial speed	l <i>u</i> .							
			,							
			.							
				•						
			u =		m s ⁻¹ [2]					

3. Railgun is researched as a weapon that would rely on electromagnetic forces to launch a projectile to very high kinetic energy.

The railgun is basically a large electric circuit, made up of three parts: a power source, a pair of parallel conducting rails and a movable conducting projectile as shown in Fig. 3.1.

When a potential difference of 1.0 kV is applied, a current *I* of 56 kA passes through the rail.

I will flow from the power supply to the positive rail, across the projectile of negligible resistance and back to the power supply through the negative rail as shown in Fig. 3.2.

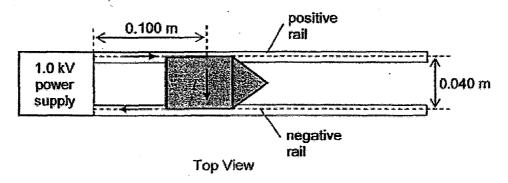


Fig. 3.2

- (a) With reference to Fig. 3.2,
 - (i) show that the resistance of the rails is 0.018Ω .

	(ii)	state the direction of the resultant magnetic field (due to the current the projectile.	nt) thro	ough
				[1]
(b)	to be	resultant magnetic field at the centre of the projectile is 1.12T and is uniform throughout the projectile. As a result, a magnetic force F is projectile.		
	(i)	Determine <i>F</i> .		
				i yes
		•	•	
		. <i>F</i> =	N	[2]
•	(ii)	State and explain whether <i>F</i> would be higher or lower in pract projectile travels along the rail.		
		·		[0]
			***************************************	[2]
	(iii)	State the direction of <i>F</i> if the direction of the current is reversed.		
				[1]
	(iv)	Explain one way in which F can be increased.		
				[1]

0040/100 Dealing France D0/0

. (a)	State the laws of electromagnetic induction.	•	
-		···	
			[2]
(b)	Define the weber.		
			[1]

A magnet is suspended vertically from a fixed point by means of a spring, as shown (c) in Fig. 4.1.

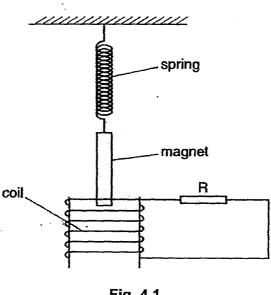


Fig. 4.1

One end of the magnet hangs inside a coil of wire. The coil is connected in series with a resistor R.

The magnet is displaced vertically downward a small distance D and then released. Fig. 4.2 shows the variation with time *t* of the vertical displacement *d* of the magnet from its equilibrium position.

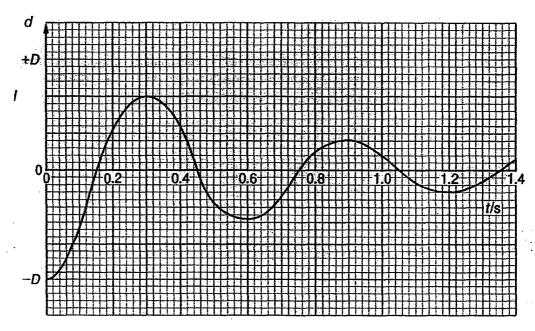
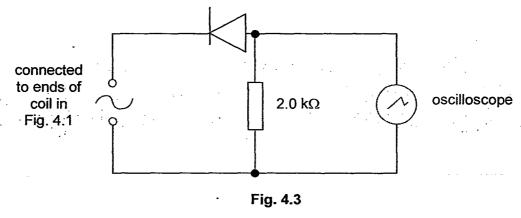



Fig. 4.2

(i)	State whether the damping of the magnet is light, heavy or critical.	
		[1]
(ii)	Use the laws of electromagnetic induction to explain why the oscillations damped.	are
	-	***************************************
		[3]

(iii) The resistance of the resistor R is increased. The magnet is again displaced a vertical distance D and released. On Fig. 4.2, sketch the variation with time t of the displacement d of the magnet. [1]

(d) The resistor R in Fig. 4.1 is removed, and the opening ends are connected to the circuit in Fig. 4.3, which consists of a 2.0 k Ω resistor, a diode and an oscilloscope. The initial r.m.s. current through the 2.0 k Ω resistor is 5.0 mA. Assume the oscilloscope has infinite resistance.

(i)	What is meant by r.m.s. current?				
	•				
	· ·				
	·	. [1]			

(ii) Calculate the initial peak value of the voltage across the 2.0 $k\Omega$ resistor.

Initial peak voltage = V [3]

i (a)	Explain what is meant by population inversion and why it is an essential condition in laser production.						
	[*]	. •					
					1,		
						[2]	
					•	 · .	
(b)	"In an n-type se electrons, thus ma	miconductor, taking the n-type	there are exce semiconductor	ess electrons for negatively charg	rming the ped."	sea of	
	State and explain	why the above	statement is ina	appropriate.			
	AND COMMON TO SERVICE						
	· ·						
			i v				
						ַנֹלִיז	

@ LIC 2046

Section B

Answer two questions from this Section.

6 (a)	Define	resistance	of	a resistor
-----	----	--------	------------	----	------------

φį.

	·			
 	<u> </u>	-		
				[1]

(b) A wire with a resistance of 6.0 Ω is stretched so that its new length is three times its original length.

Assuming that the resistivity and density of the material are not changed during the stretching process, calculate the resistance of the longer wire.

resistance =
$$\Omega$$
 [3]

(c) The circuit shown in Fig. 6.1 is constructed of resistors, each of which has a maximum safe power rating of 0.40 W.

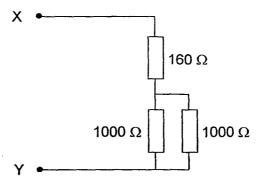
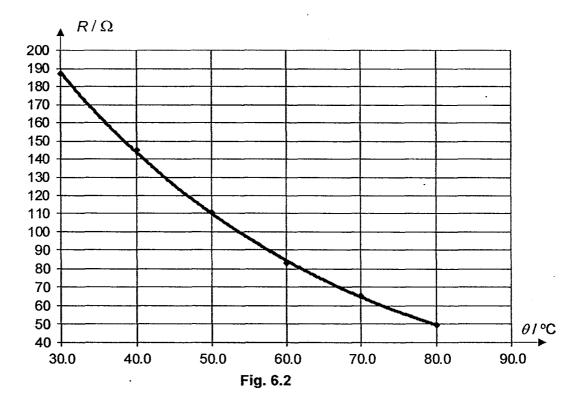


Fig. 6.1


(ii)

(i) Determine the maximum potential difference that can be applied between X and Y without damage to any of the resistors.

maximum potentiai dineren	ce =		V [3]
If this potential difference was exceeded, expl most likely to fail first.	ain which ı	resistor(s)	would be

[2]

(d) A student investigated how the resistance R of a small semiconductor device X varies with Celsius temperature θ . Fig. 6.2 shows the variation with temperature θ of resistance R.

and the	(i)	Device X is assumed to conform to a relationsh	ip of the form	
		$R = Ae^{\frac{B}{T}}$		
		where A and B are constants, T represents the	thermodynamic temperatur	e.
		Calculate a value for A and for B by using temperatures of 50.0 °C and 80.0 °C.	values of R corresponding	g to
	·			
ej genegar J				
:				
			•	
			Α = Ω	[2]
		·	<i>B</i> = K	[2]
	(ii)	Discuss a method of determining the values of	A and B more reliably.	
. 		•		
* **				[1]
			•	

(e) In Fig. 6.3, sketch a graph of the current / through device X against the potential difference V across it.

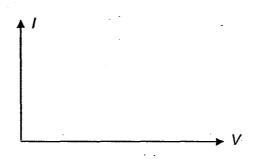
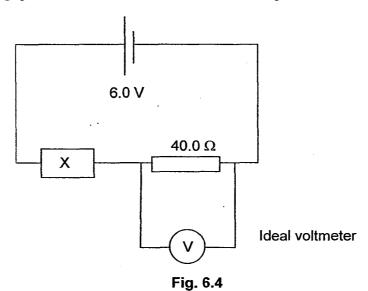



Fig. 6.3

[1]

(f) Device X is now connected to a fixed resistor of resistance 40.0 Ω and a 6.0 V battery of negligible internal resistance as shown in Fig. 6.4.

(i) Calculate an estimated value of the voltmeter reading when device X is immersed in water at temperature 30.0 °C.

voltmeter reading V =

V [2]

(11)	voltmeter reading would increase or decrease.
	• .
	[2]
	Suggest how the circuit in Fig. 6.4 can be modified so that a buzzer will sound when the temperature rises too high.
	[1]

7	(a)	Define	gravitational	potential
•	(a)		gravitationar	polemia

[1]

(b) A certain planet has a radius of 1150 km. Fig. 7.1 below shows the variation with the distance r from the centre of this planet, of the gravitational potential ϕ near it.

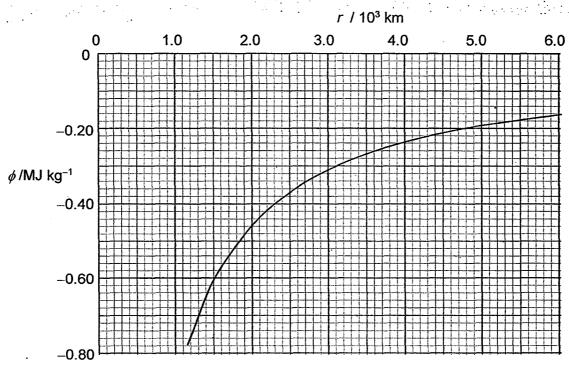


Fig. 7.1

(1)	Explain why gravitational potential has a negative value.	

[2]

(ii) The gradient of this graph represents the magnitude of a particular vector quantity. State the physical quantity.

[1]

	,	<i>,</i>								t to infinity.	
							•				
				•							
						•					
					e.						
lang.			· · ·								
				•		e en					· · · . · · ·
					÷	€	escape velo	city =		m s	⁻¹ [2]

. (c) A	A geo:	stationa	rv satell	lite orbits	the Far	th			-	
•		_		-			e in the pla	ne of the	equator.		
		•					,		•	•	
			ve*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	W-117		***************************************				
								······································			
						•					
	***************************************				· noment · · · · · · · · · · · · · · · · · · ·				n/#RIVI		[2]
		***************************************				<u> </u>					-

		20
(d)		satellite in (c), of mass 1500 kg, orbits the Earth in a circle of radius r with od T . It is known that the two quantities are related by the equation
,		$T = Ar^n$
•	The	Earth has a mass of 6.0×10^{24} kg and a radius of 6.4×10^6 m.
	(i)	Determine the values of <i>n</i> and <i>A</i> .
		Include appropriate units, if any, with your values.
.•		
•		
	٠	
		•
	•	
		. n=

n=	
A =	[4]

(ii) Calculate the distance of the orbit from the *surface* of the Earth.

distance =	m	[2]
------------	---	-----

@ UC 2016

06/6/102 Prolim Evam D3/2016

0 D3/2016 PT----- O

(iii) Calculate the total energy of the satellite in orbit.

					•					
A . *										
. • •					e nativi					
				•	total	energy =			J	[2]
	(iv)	Hence, or oth satellite into o	herwise, rbit.	determi	ne the	minimum	energy	required	to put	this
		•				-				
		÷								
٠										
er i										
						energy =			j	[3]

	(v)	Suggest why,	in practi	ce, most	satellit	es are laur	nched ne	ear the ec	uator.	
	-			•						[1]
	-									•

8 The human ear is the organ for hearing and balance. It consists of three parts – the outer ear, the middle ear and the inner ear, as shown in Fig. 8.1.

> Sound waves travel through the outer ear, impacts on the eardrum and causes it to vibrate.

> This question deals with some of the physics of the human ear and some properties of sound waves which is a longitudinal progressive wave.

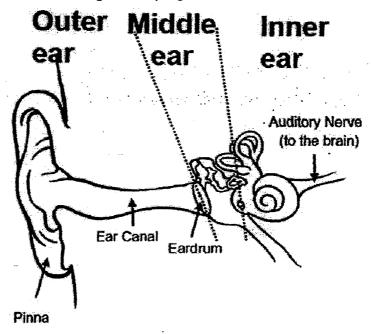


Fig. 8.1

A given sound wave striking the eardrum sets it oscillating in simple harmonic motion. The eardrum oscillates at a frequency of 2500 Hz with amplitude of 1.0×10^{-7} m.

(i)	Explain the term longitudinal progressive wave.	
		•
		[1
(ii)	Calculate the period of the oscillation.	

period = [1]

Calculate the period of the oscillation.

(iii) On the axes of Fig. 8.2, draw a graph to show how the displacement of the eardrum varies with time for one oscillation. Assume that the displacement is zero at t = 0 ms. [2]

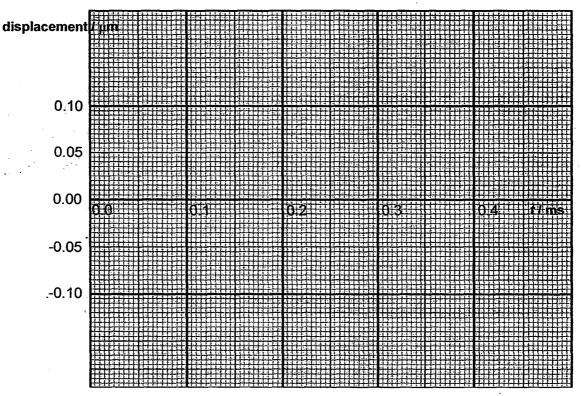


Fig. 8.2

(iv) Calculate the maximum velocity and maximum kinetic energy of the eardrum. You may assume that the mass of the eardrum is 1 g.

maximum velocity = m s⁻¹ [2]

maximum kinetic energy = J [1]

(v) Mark, on the graph of Fig. 8.2, a point at which maximum acceleration occurs. Mark this point A. [1]

(vi) Mark, on the graph of Fig. 8.2, a point at which maximum velocity occurs. Mark this point K. [1]

(vii) The human ear is most sensitive to frequencies around 3000 Hz. This is because air in the ear *resonates* at this frequency.

Explain what is meant by *resonance* and describe how resonance allows the ear to respond to quieter sounds at around 3000 Hz than at other frequencies.

[2]

(b) Fig. 8.3 shows the variation with time t of the displacements x_A and x_B at a point P of two sound waves A and B.

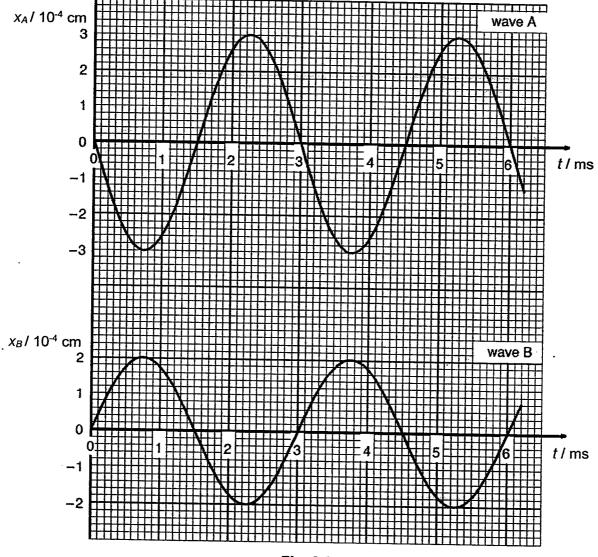


Fig. 8.3

	these two waves.	e betwe	96
	Similarity:		
	Difference:		
	·		
): .	State, with a reason, whether the two waves are coherent.	. •	
	•		
i)	The intensity of wave B alone at point P is I . Calculate the intensity, in terms of I , of the two waves at point P.	e resul	ta
	·		

(c) Fig. 8.4 shows two loudspeakers L₁ & L₂ that produced the two sound waves A and B as mentioned in (b) respectively.

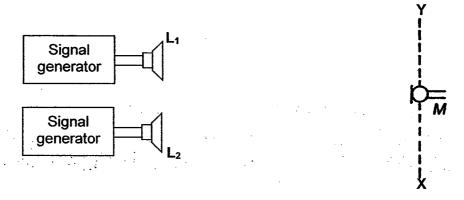


Fig. 8.4

	i
	•
Barriella de la companya de la comp	
Describe and explain any changes in the bull the microphone M which would be but the sound from both signal generators.	e sound pattern along XY deterought by doubling the frequer
by the microphone M which would be be	

End of Paper

Qii	Suggested Control of William Relation Suggested Solution	Remais I
1(a)	At point C, $N + mg = \frac{mv^2}{r} \rightarrow N = \frac{mv^2}{r} - mg$	
	, ,	[1] -
	For the car to remain in contact with the runway, $N > 0$	principle
	$\frac{mv^2}{r} - mg \ge 0$	[4] oub
	<i>r</i>	[1] – sub
·	$v \ge \sqrt{gr} = \sqrt{(9.81)(0.25)} = 1.6 \text{ m s}^{-1}$	
(b)	By conservation of energy,	[1] – sub
	$(0.100)(9.81)h - (0.100)(9.81)(0.50) = \frac{1}{2}(0.100)(1.6)^2 - 0$	[1] - 300
	0.100(9.81)h - 0.4905 = 0.128	[1] - ans
	h = 0.63 m	•
· (c)(i)	By conservation of momentum,	
	$(0.100)(3.5) + 0 = (0.180)v_0$	
	$v_D = 1.9 \text{ m s}^{-1}$	[1] – sub [1] – ans
(ii)	By conservation of energy,	[1] ans
	$\frac{1}{2}(0.180)(1.944)^2 - 0 = \frac{1}{2}(120)x^2$	F47
1	$\frac{-(0.180)(1.944)}{2} - 0 = \frac{-(120)x^2}{2}$	[1] – sub [1] – ans
	$x = 0.0753 \text{ m} \approx 0.075 \text{ m}$	[I] uno
(d)	The compression will be smaller because some of the kinetic energy of the cars is used to do work against friction.	[1]
in englishme		
2(a)	Electric potential at a point is the work done per unit positive charge to bring	[1]
(b)(i)	a small charge from infinity to that point.	[1] - shape
(-)(-)		[1] - r -
		intercept
	│	
	15 30 r/ mm	
(ii)1.	Electric potential energy = $\frac{Q_{P}Q_{Q}}{4\pi\varepsilon_{o}r} = -(9 \times 10^{9}) \left(\frac{(40 \times 10^{-6})^{2}}{30 \times 10^{-3}}\right)$	[1] - sub
	i e e e e e e e e e e e e e e e e e e e	[1] - ans
2.	= - 480 J By conservation of energy,	
2.	KE loss = EPE gain	
	$\frac{1}{2}mu^{2}(2) - 0 = 0 - (-480) \Rightarrow u^{2} = \frac{480}{m} \Rightarrow u = \sqrt{\frac{480}{m}} = \sqrt{\frac{480}{24.5 \times 10^{-3}}}$	[1] - sub
		[1] - ans
	$= 140 \text{ m s}^{-1}$	
3(a)(i)	V 1010 ³	[1]
יואנטאַ	$R = \frac{V}{V} = \frac{1.0 \times 10^3}{1.0 \times 10^3} = 0.018 \Omega$	* " J

PHYSICS DEPARTMENT 2016 JC2 Preliminary Examinations 9646 H2 Physics Paper 3 Suggested Solutions with Markers' Comments

(e)n	Suggested solution	Renerks
(ii)		[1]
3(b)(i)	$F = BIL \sin 90^{\circ} = 1.12(56 \times 10^{3})(0.04)$	[1] - Sub
	= 2508.8	[1] – Ans
	= 2500 N	
(ii)	As the projectile travels along the rail, resistance increases and current I	[1]
	decreases. Therefore force decreases.	F43
(iii)	To the right.	[1] [1]
(iv)	Use stronger current/voltage of the power supply	[1]
	OR Decrease resistance of track (includes increasing the cross-sectional area of	1-3
	the track).	
4(a)	Faraday's law states that the magnitude of induced e.m.f. in a coil is proportional to the rate of change of magnetic flux linkage through that coil.	[1]
	Lenz's law states that the direction of the induced e.m.f. opposes the	[1]
	change producing it.	
(b)	The weber is the magnetic flux through an area of one square metre if the	[1]
(-)/2\	flux density normal to the plane of the area is one tesla.	F47
(c)(i)	The oscillations are lightly damped . As the magnet moves, magnetic flux linkage through the coil is changed .	[1]
(c)(i)	From Faraday's law, an e.m.f. is induced in the coil.	[1]
	Since the circuit is closed, a current flows.	[1]
	From Lenz's law, the induced current produces a magnetic force on the	[1]
(22)	magnet opposing its motion.	P47
(ii)	The amplitude decreases more gradually, i.e. for each cycle, the amplitude is smaller than the existing ones.	[1]
(d)(i)	Root-mean-square current from an AC source is the current which will	[1]
	produce the same heating effect in a resistive load as the steady current	
/ii)	from a DC source. For half-wave rectified AC, peak current $I_0 = 2I_{rms} = 2(5.0 \text{ mA}) = 10.0 \text{ mA}$	[1] - / _o value
(ii)	Peak voltage $V_0 = I_0 R = (10.0 \text{ mA})(2.0 \text{ k}\Omega)$	[1] - 10 Value
	= 20.0 V	[1] - ans
5(a)	Population inversion is a condition when there are more atoms in a higher	[1]
	energy state than in the lower energy state.	F43
	This ensures that the probability that an incident photon will stimulate emission exceeds the probability that the photon will be absorbed.	[1]
(b)	The semiconductor is neutral . When it is doped with Group V atoms, they are	[1]
	neutral since the number of protons and electrons are the same. The n-	[1]
	type semiconductors are doped with atoms of extra valency. As a result,	The state of the s
	electrons are the majority charge carriers.	
6(a)	Resistance of a resistor is defined as the ratio of the potential difference across	[1]
U(a)	it to the current flowing through it.	F.1
	, <u> </u>	<u></u>

S On i	Suggested Solutions with markers Comments Suggested Solution	Remarke
(b)	Volume $V = A \times I$	
	$\rightarrow A - V$	}
	$\Rightarrow A = \frac{V}{I}$	
	$\rho = \rho l \rho l \rho l^2$	[1] exp
	Resistance, $R = \frac{\rho l}{A} = \frac{\rho l}{V/l} = \frac{\rho l^2}{V} = 6.0 \Omega$	[1] evb
	//	
	When the length is 3 <i>I</i> ,	
	new resistance $=\frac{\rho(3I)^2}{A} = \frac{\rho(9I^2)}{A} = 9\frac{\rho I^2}{A} = 9 \times 6.0 = 54 \Omega$	[1] sub
		[1] ans
(c)(i)	Maximum safe current passing through the 1000 Ω resistor,	.
	$I_{1000\Omega} = \sqrt{\frac{P}{R}} = \sqrt{\frac{0.40}{1000}}$	
	• • • • • • • • • • • • • • • • • • • •	[1] value
	= 0.020 A	[1] value
]	Maximum safe current passing through the 160 Ω resistor,	
	$I_{160\Omega} = \sqrt{\frac{P}{R}} = \sqrt{\frac{0.40}{160}}$	
	VR = 0.050 A	
	Hence maximum safe current flowing through the circuit without damaging any	
	of the resistor is $I_{\text{max}} = 0.020 + 0.020 = 0.040 \text{ A}$	
	Maximum safe potential difference applied between X and Y	
-	$V = 0.040 \times 160 + 0.020 \times 1000$	[1] sub
(5)(5)	= 26.4 V	[1] ans
(c)(ii)	One of the 1000 Ω resistors would be most likely to fail. When the maximum safe potential difference is exceeded, the current flowing in	[1]
	the circuit will be more than the safe current. Thus the current flowing in the	[1]
	1000 Ω resistor will be more than 0.020 A which will result in exceeding the	
	maximum safe power.	
(d)(i)	Given $R = Ae^{\frac{B}{T}} \Rightarrow \ln R = \ln A + \frac{B}{T}$	
	Given $K = Ae^{-\tau} \implies \inf K = \inf A + \frac{1}{T}$	[1] read
	Temperatures $\theta = 50$ °C corresponds $T = 50 + 273 = 323$ K	off values
	and 80 ^o C correspond to <i>T</i> = 80 + 273 = 353 K	and
	From growth D = 110 O at 50 00 and D = 50 O at 90 00 magneticals	convert to
	From graph, R = 110 Ω at 50 $^{\circ}$ C and R = 50 Ω at 80 $^{\circ}$ C respectively.	kelvin
	$\Rightarrow \ln 110 = \ln A + \frac{B}{323} (1)$	
		[1] working
	$\ln 50 = \ln A + \frac{B}{353} (2)$	
	(1) – (2) gives $\ln 110 - \ln 50 = \frac{B}{323} - \frac{B}{353}$	F41
	Solving	[1] ans [1] ans
	$B \approx 3.0 \times 10^3 \text{ K}$	[i] and
	$A \approx 1.03 \times 10^{-2} \Omega$	
(d)(ii)	A graph of $\ln R$ against 1 using the equation $\ln R = \ln A + \frac{B}{A}$ is plotted	
	A graph of In R against $\frac{1}{T}$ using the equation $\ln R = \ln A + \frac{B}{T}$ is plotted.	[1]
	Gradient of the graph is equal to B and the y-intercept equals to In A.	1.1

(อิกา	Suggested Solutions with Markers' Comments Suggested Solution	- रिकासिक ी
(e)	A 1	[1]
	V	
(£\/i\	At 30.0 $^{\circ}$ C, the resistance of X is approximately 188 Ω .	
(f)(i)	By the potential divider principle, potential difference across the 40.0 Ω resistor	
. •	is	
	R = R	
	$V = \frac{R}{R + R_X} E$,
	to the control of the	[1] sub
	$V = \frac{40.0}{40.0 + 188} (6.0)$	[1] ans
	= 1.05 V	
(ii)	The voltmeter reading will increase.	[1] state
	Using the notential divider principle $V = R$	
	Using the potential divider principle, $V = \frac{R}{R + R_X} E$	
	As temperature rises, the resistance R_X decreases.	
	Hence the ratio of $V = \frac{R}{R + R_x} E$ increases.	[1] expl
	$\frac{1}{R} + R_X$	
(iii)	The voltmeter could be replaced by a buzzer.	[1]
	When the temperature rises beyond a certain level, the p.d. across the buzzer	
	rises beyond a trigger value causing the buzzer to be activated.	
7(a)	The gravitational potential at a point is defined as the work done per unit mass	[1]
. ,	(by an external agent) in bringing a small mass from infinity to that point.	
(b)(i)	Potential at infinity is taken to be zero.	[1]
	Due to the attractive nature of the gravitational force, work done per unit mass	[1]
	(by an external agent) to bring an object from infinity to any point is always negative. Hence the potential at any point must always be negative.	
(b)(ii)	gravitational field strength	[1]
(iii)		
	$m\phi + \frac{1}{2}mv^2 = 0 \Rightarrow -2\phi = v^2 \Rightarrow v = \sqrt{-2\phi}$	
	At the surface, $\phi = -0.78 \times 10^6 \text{ J kg}^{-1}$	[4] . eub
	$v = \sqrt{-2\phi} = \sqrt{-2(-0.78 \times 10^6)} = 1250 \text{ m s}^{-1}$	[1] - sub [1] - ans
(c)	For the satellite to appear stationary when observed from the Earth, the axis of	[1]
(5)	the orbit of the satellite must be the axis of rotation of the Earth.	F.3
	The gravitational force by the Earth on the satellite provides the centripetal force	
	and is directed towards the centre of Earth. Since the centripetal force is	-47
	directed towards the centre of its orbit, thus for any satellite, the centre of the	[1]
	orbit must be the centre of the Earth . Hence a geostationary satellite must be above the equator.	
	aboto the equator.	L

211	કેલ્લાલકલાં જાવવાં જો છે.	િસ્લિમકામીક
(d)(i)	Gravitational force provides the centripetal force,	
	$\frac{GMm}{r^2} = mr\omega^2 \rightarrow \frac{GM}{r^3} = \omega^2 = \left(\frac{2\pi}{T}\right)^2 = \frac{4\pi^2}{T^2}$	
	$\left(\frac{1}{r^2} - mw\right) = \frac{1}{r^3} - w - \left(\frac{1}{T}\right) - \frac{1}{T^2}$	
	$T_2 = 4\pi^2 r^3 = (4\pi^2)_{3} \times T_2 = (2\pi)_{3/2}$	[1] - sub
	$\Rightarrow T^2 = \frac{4\pi^2 r^3}{GM} = \left(\frac{4\pi^2}{GM}\right) r^3 \Rightarrow T = \left(\frac{2\pi}{\sqrt{GM}}\right) r^{3/2}$	[1] - ans <i>n</i>
	$3 2\pi \qquad 2\pi$	[1] - ans A
	$\therefore n = \frac{1.5}{2} = 1.5; A = \frac{1.5}{\sqrt{GM}} = \frac{1.667 \times 10^{-11}}{(6.67 \times 10^{-11})(6.0 \times 10^{24})} = 3.14 \times 10^{-7} \text{ s m}^{-3/2}$	[1] - unit
(ii)	$\therefore n = \frac{3}{2} = 1.5 \; ; \; A = \frac{2\pi}{\sqrt{GM}} = \frac{2\pi}{\sqrt{(6.67 \times 10^{-11})(6.0 \times 10^{24})}} = 3.14 \times 10^{-7} \text{ s m}^{-3/2}$ From $T = Ar^{3/2} \Rightarrow r = \left(\frac{T}{A}\right)^{2/3} = \left(\frac{(24)(3600)}{3.14 \times 10^{-7}}\right)^{2/3} = 4.23 \times 10^{7} \text{ m}$	[1] - sub
(11)	From $T = Ar^{3/2} \rightarrow r = \left(\frac{T}{T}\right)^{-1} = \left(\frac{(24)(3600)}{(24)(3600)}\right)^{-1} = 4.23 \times 10^7 \mathrm{m}$	[1] - Sub [1] - ans
		6-3
/:::\	Distance from surface = $4.23 \times 10^7 - 6.4 \times 10^6 = 3.59 \times 10^7 \text{ m}$	F43
(iii)	Total energy of satellite = $-\frac{GMm}{2r} = -\frac{(6.67 \times 10^{-11})(6.0 \times 10^{24})(1500)}{2(4.23 \times 10^7)}$	[1] - sub [1] - ans
		[i] dilo
/i. A	$= -7.09 \times 10^9 \text{ J}$	[4] aub
(iv)	Potential energy at surface of Earth = $-\frac{GMm}{R} = -\frac{(6.67 \times 10^{-11})(6.0 \times 10^{24})(1500)}{6.4 \times 10^{6}}$	[1] - sub [1] - E _{surface}
	$R = -9.38 \times 10^{10} \text{ J}$	L.1 —surace
	Minimum Energy required = $(-7.09 \times 10^9) - (-9.38 \times 10^{10}) = 8.67 \times 10^{10}$ J	[1] - ans
(v)	Due to the rotation of the Earth, so at the equator, the linear speed is the	[1]
	highest. A satellite launched near the equator has the highest initial kinetic	
	energy before the launch.	
	Hence it requires the least amount of energy to launch it to its orbit.	
8(a)(i)		[4]
8(a)(i)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy	[1]
	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings.	
8(a)(i) (ii)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy	[1] [1] – ans
(ii)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings.	
	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings.	
(ii)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$	
(ii) (iii) (v)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$	
(ii) (iii) (v)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$	
(ii) (iii) (v)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$	
(ii) (iii) (v)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$	
(ii) (iii) (v)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$	
(ii) (iii) (v)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$	
(ii) (iii) (v)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$	
(ii) (iii) (v)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = 1 / f = 1 / 2500 = 4 x 10 ⁻⁴ s (ii) since curve [1], passing 0.2 ms and 0.4 ms [1] (iv) correct a [1]	
(ii) (iii) (v) (vi)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = 1 / f = 1 / 2500 = 4 x 10 ⁻⁴ s (ii) since curve [1], passing 0.2 ms and 0.4 ms [1] (iv) correct a [1] (v) correct k [1]	[1] – ans
(ii) (iii) (v)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$ (ii) since curve [1], passing 0.2 ms and 0.4 ms [1] (iv) correct a [1] (v) correct k [1] $v = \omega x_0 = (2 \pi 2500)(1 \times 10^{-7}) = 1.57 \times 10^{-3} \text{ m s}^{-2}$	[1] – ans
(ii) (iii) (v) (vi)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$ (ii) since curve [1], passing 0.2 ms and 0.4 ms [1] (iv) correct a [1] (v) correct b [1] (v) correct k [1] $v = \omega x_0 = (2 \pi 2500)(1 \times 10^{-7}) = 1.57 \times 10^{-3} \text{ m s}^{-2}$ KE = $\frac{1}{2} m v_{\text{max}}^2$	[1] – ans
(ii) (iii) (v) (vi)	A longitudinal wave is one whereby the oscillations of particles are parallel to the direction of propagation and a progressive wave is one in which energy travels from source to surroundings. Period = $1/f = 1/2500 = 4 \times 10^{-4} \text{ s}$ (ii) since curve [1], passing 0.2 ms and 0.4 ms [1] (iv) correct a [1] (v) correct k [1] $v = \omega x_0 = (2 \pi 2500)(1 \times 10^{-7}) = 1.57 \times 10^{-3} \text{ m s}^{-2}$	[1] – ans

PHYSICS DEPARTMENT 2016 JC2 Preliminary Examinations 9646 H2 Physics Paper 3 Suggested Solutions with Markers' Comments

an Lun	અભારકભાજામાંમાં	Remarks
(vii)	Resonance is the tendency of a system to <u>oscillate</u> at maximum <u>amplitude</u> when the <u>driving frequency</u> matches the natural frequency of the system.	[1]
	At other frequencies, there is no resonance. The amplitude of the vibrating ear drum is less. Hence they seem softer.	[1]
	Note:	
	Amplitude of sound is NOT amplified.	
(b)(i)	Similarity: frequency, period	[1]
	Difference: amplitude, phase	[1]
(ii)	Coherent, because phase difference is constant.	[1]
(iii)	$I_{\rm B} = k(2x10^{-4})^2 = I (1)$	[1] resultant
` ,	Resultant amplitude = $(3-2)x10^{-4}$ m = $1x10^{-4}$ m	amplitude
i	$I_{\text{resultant}} = k(1 \times 10^{-4})^2$ (2)	
	$(2)/(1): I_{\text{resultant}} = 0.25 I$	[1] Ans
(c)(i)	As M moves from X to Y, it will pass through alternating maxima and minima	[1]
(0)(.)	(loud and soft).	1
	Loud sound corresponds to constructive interference and soft sound	[1]
	corresponds to destructive interference.	1.1
(ii)	Doubling the frequency halves the wavelength, the distance between two	[1]
(ii)		1 = .=
	adjacent maxima (loud) will be approximately halved.	[1]