1 Bromate ion, bromide ion and hydrogen ions react according to the equation as shown.

$$BrO_3(aq) + 5Br(aq) + 6H(aq) \rightarrow 3Br_2(aq) + 3H_2O(1)$$

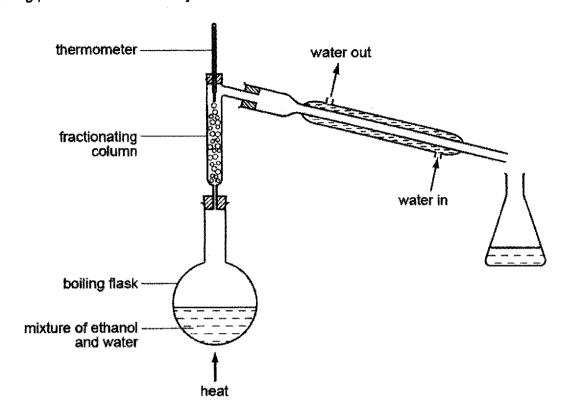
Some apparatus for measuring the change in the rate of this reaction are suggested.

- 1 gas syringe
- 2 balance
- 3 pH meter

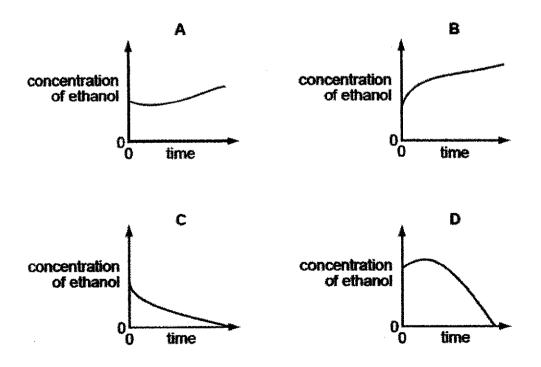
Which apparatus are suitable to measure the rate of this reaction?

- A 1 only
- B 3 only
- C 1 and 2
- **D** 2 and 3
- 2 A mixture of propane, butane, hydrogen sulfide and carbon dioxide at -30 °C is allowed to cool down gradually to -200 °C.

compound	melting point / °C	boiling point / °C				
propane	-188	-42				
butane	-135	-1				
hydrogen sulfide	-85	-51				
carbon dioxide	-78	-78				


Which compound will solidify first?

- A butane
- **B** carbon dioxide
- C hydrogen sulfide
- **D** propane


3

Swiss Cottage Secondary School / Chemistry Paper 1 / 4 Express / Prelim Exam 2024

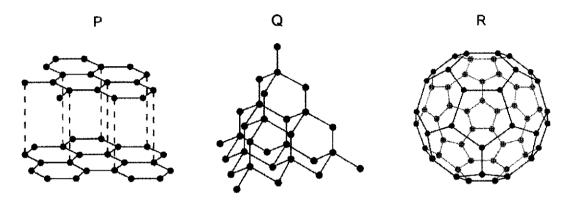
The apparatus shown is used to obtain ethanol from a dilute solution of ethanol in water. [boiling point of ethanol: 78 °C]

Which graph shows the change in concentration of the ethanol in the boiling flask as the distillation proceeds?

4
Swiss Cottage Secondary School / Chemistry Paper 1 / 4 Express / Prelim Exam 2024

4 Which option correctly shows the numbers of particles in ${}_{16}^{34}$ S²⁻?

	protons	neutrons	electrons
A	16	16	16
В	16	18	18
С	18	16	20
D	20	14	22


5 A sample of oxygen is a mixture of the two isotopes ${}^{16}_{8}$ O and ${}^{18}_{8}$ O.

The relative atomic mass of carbon is 12.

What are possible values of the relative molecular mass of different molecules of carbon dioxide formed by the combination of carbon and oxygen.

- 1 44
- 2 46
- 3 48
- A 1 only
- B 1 and 2 only
- C 1 and 3 only
- **D** 1, 2 and 3
- Three elements X, Y and Z have consecutive increasing proton (atomic) numbers. If element Z is a noble gas, how is a stable compound formed between X and Y?
 - A An atom of X transfers 2 electrons to 1 atom of Y to form XY.
 - B An atom of X transfers 2 electrons to 2 atoms of Y to form XY₂.
 - C An atom of X shares 2 electrons with 1 atom of Y to form XY.
 - D An atom of X shares 2 electrons with 2 atoms of Y to form XY₂.

- 7 Which solid contains more than one type of bonding?
 - A magnesium nitrate
 - **B** silicon dioxide
 - C sodium chloride
 - **D** zinc
- 8 P, Q and R represent three different structures of an element.

Which structures are giant covalent?

- A Pand Q
- **B** P and R
- C Q and R
- D P, Q and R
- **9** 5.0 g samples of the carbonates of barium, copper, sodium and magnesium are decomposed to form the metal oxides and carbon dioxide.

For which compound is there the greatest loss in mass?

- A barium carbonate
- B copper(II) carbonate
- C magnesium carbonate
- D sodium carbonate

6

Swiss Cottage Secondary School / Chemistry Paper 1 / 4 Express / Prelim Exam 2024

In an experiment, 8.0 cm³ of 1.0 mol/dm³ aqueous copper(II) nitrate was mixed with 6.0 cm³ of 1.0 mol/dm³ aqueous potassium carbonate in a beaker.

The reaction can be represented by the equation:

$$Cu(NO_3)_2 + K_2CO_3 \rightarrow CuCO_3 + 2KNO_3$$

What did the reaction vessel contain when the reaction was complete?

- A a green precipitate only
- B a green precipitate and a blue solution
- C a green precipitate and colourless solution
- D a blue precipitate and a colourless solution
- 11 The equation for the combustion of methane is as shown.

Which statement is incorrect for a complete combustion of methane?

- A 1 mole of methane will react with 48 dm³ of oxygen at r.t.p.
- **B** 5 cm³ of methane will reacts with 10 cm³ of oxygen at r.t.p.
- C 8 g of methane when burnt will form 24 dm³ of carbon dioxide.
- **D** 8 dm³ of methane will produce 12 g of water.
- Ferrite is a ceramic-like material with magnetic properties that are useful in many types of electronic devices. It is made of a mixture of the oxides of calcium and iron. It contains 18.5% calcium and 51.9% iron by mass.

What is the empirical formula of ferrite?

- A CaFe₂O
- B CaFe₂O₄
- C Ca₂FeO₂
- D Ca₄Fe₂O

- Both hydrochloric acid and ethanoic acid have the same concentration of 0.5 mol/dm³. Which methods are suitable to test for their strengths?
 - 1 using a pH meter
 - 2 measuring their electrical conductivity
 - 3 titration using sodium hydroxide solution
 - A 1 only
 - **B** 1 and 2
 - C 2 and 3
 - D all of the above
- An alloy reacts with dilute hydrochloric acid to evolve a gas which extinguishes a lighted splint with a 'pop' sound. A red-brown solid residue remains, which turns into a black solid when heated in air.

Which two metals are present in the alloy?

- A silver and zinc
- B silver and copper
- C iron and copper
- D iron and aluminium
- 15 The equations represent reactions of dilute sulfuric acid.

Which reaction is not 'typical' of a dilute acid?

- A $CuO(s) + H_2SO_4(aq) \rightarrow CuSO_4(aq) + H_2O(l)$
- **B** $2KOH(aq) + H₂SO₄(aq) \rightarrow K₂SO₄(aq) + <math>2H₂O(l)$
- C Pb(NO₃)₂(aq) + H₂SO₄(aq) \rightarrow PbSO₄(s) + 2HNO₃(aq)
- D $ZnCO_3(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2O(l) + CO_2(g)$
- 16 Which oxide is insoluble in aqueous sodium hydroxide?
 - A Al₂O₃
 - B MgO
 - C P4O₁₀
 - D SO₂

8

Swiss Cottage Secondary School / Chemistry Paper 1 / 4 Express / Prelim Exam 2024

Which row of information correctly displays the reactants used to safely prepare a salt with the highest possible yield?

	reactants	salt to be prepared
A	calcium oxide and sulfuric acid	calcium sulfate
В	copper and hydrochloric acid	copper(II) chloride
С	lithium and hydrochloric acid	lithium chloride
D	zinc oxide and sulfuric acid	zinc sulfate

18 Tests were carried out on an aqueous solution of an unknown compound, P.

The observations were recorded in the table.

test	observation
aqueous sodium hydroxide added	white precipitate, soluble in excess giving a colourless solution
aqueous ammonia	white precipitate, soluble in excess giving a colourless solution
aqueous barium nitrate added, followed by dilute nitric acid	white precipitate formed, white precipitate soluble in dilute nitric acid to form a colourless solution

Which ions are present?

- A Al3+ and SO42-
- B Zn²⁺ and SO₄²⁻
- C Al3+ and CO32-
- D Zn²⁺ and CO₃²⁻
- In the Haber process, a high yield of ammonia is favoured by high pressure and low temperature. In practice, a high temperature is used.

Which statement best explains the discrepancy in the preferred temperature?

- A At low temperature, ammonia decomposes back to its original reactants.
- **B** At low temperature, the activation energy is too low.
- C At low temperature, the catalyst is inactive.
- **D** At low temperature, the reaction is too slow.

9

Swiss Cottage Secondary School / Chemistry Paper 1 / 4 Express / Prelim Exam 2024

20 Which reaction is not a redox reaction?

A Mg + 2HNO₃ \rightarrow Mg(NO₃)₂ + H₂

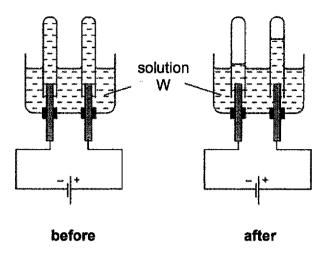
B $2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$

C $SO_2 + NO_2 \rightarrow SO_3 + NO$

D $SO_3 + H_2O \rightarrow H_2SO_4$

21 Hydrogen peroxide (H₂O₂) acts as an oxidising agent in some reactions, but in others, as a reducing agent.

reaction 1: H₂O₂ + 2KI + H₂SO₄ → I₂ + K₂SO₄ + 2H₂O

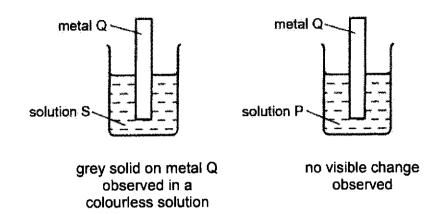

reaction 2: 5H₂O₂ + 2KMnO₄ + 3H₂SO₄ → 2MnSO₄ + K₂SO₄ + 5O₂ + 8H₂O

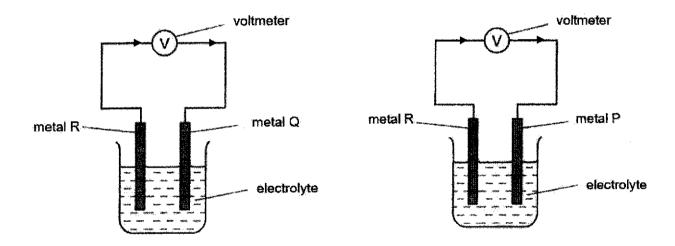
reaction 3: H₂O₂ + Ag₂O → 2Ag + O₂ + H₂O

Which row identifies correctly the role of hydrogen peroxide in each reaction?

	reaction 1	reaction 2	reaction 3
A	oxidising agent	reducing agent	oxidising agent
В	oxidising agent	reducing agent	reducing agent
С	reducing agent	oxidising agent	reducing agent
Đ	reducing agent	oxidising agent	oxidising agent

22 The diagram shows an electrolysis set-up using inert electrodes before and after the electrolysis.




Which could solution W be?

- 1 aqueous sodium nitrate
- 2 aqueous copper(II) sulfate
- 3 concentrated aqueous sodium chloride
- 4 dilute sulfuric acid
- A 4 only
- B 1 and 4 only
- C 2 and 3 only
- **D** 1, 3 and 4 only

11
Swiss Cottage Secondary School / Chemistry Paper 1 / 4 Express / Prelim Exam 2024

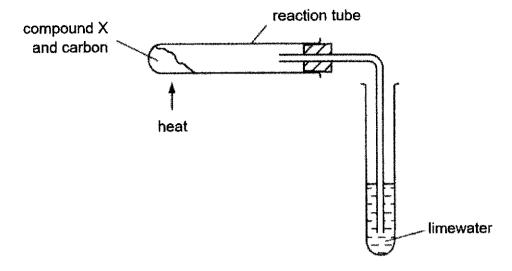
23 Study the set-ups as shown to determine the order of reactivity of four metals, P, Q, R and S.

If a simple cell was set up between two of the metals, which pair of electrodes will give the largest voltmeter reading?

- A metal R and metal Q
- B metal R and metal S
- C metal R and metal P
- D metal P and metal Q

24 Three elements E, F and G belong to the same period in the Periodic Table. The properties of their oxides are as given.

oxide of E:	soluble in both nitric acid and aqueous potassium hydroxide
oxide of F:	insoluble in water and aqueous sodium hydroxide but dissolves readily in nitric acid
oxide of G:	changes acidified potassium manganate(VII) from purple to colourless

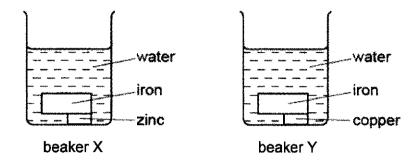

What is the arrangement of E, F and G in order of decreasing atomic number in the Periodic Table?

- **A** E, F, G
- **B** F, E, G
- **C** G, F, E
- D G, E, F
- 25 Which statement about catalysts is correct?
 - A Catalysts are used in industry to reduce energy costs.
 - B Catalysts are used up during a reaction.
 - C Manganese dioxide is used as a catalyst in the Haber Process.
 - **D** Transition metals do not make good catalysts.
- 26 The element astatine is below iodine in Group 17 of the Periodic Table.

Which statement describes a tatine correctly?

- A It forms a covalent compound with potassium.
- **B** It has a high melting point due to strong covalent bonds.
- **C** It is a dark coloured gas at room temperature and pressure.
- **D** It is a weaker oxidising agent than iodine.

27 Compound X is heated with carbon using the apparatus as shown.



A red-brown solid is formed in the reaction tube and white precipitate is seen in limewater.

What is compound X?

- A calcium oxide
- B copper(II) oxide
- C magnesium oxide
- D sodium oxide

28 Two pieces of iron, one with zinc attached and the other with copper attached, are placed separately in water as shown.

Which statements are correct?

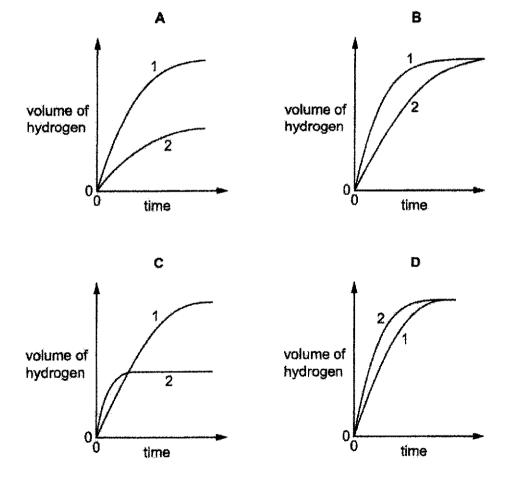
- 1 The iron in beaker X will not rust.
- 2 The zinc in beaker X will be oxidised.
- 3 The water in beaker Y will turn blue.
- A 1 and 2 only
- B 1 and 3 only
- C 2 and 3 only
- **D** 1, 2 and 3
- 29 The formation of liquid water from hydrogen and oxygen may occur in three stages.

Stage 1 : $2H_2(g) + O_2(g) \rightarrow 4H(g) + 2O(g)$

Stage 2: $4H(g) + 2O(g) \rightarrow 2H_2O(g)$

Stage 3 : $2H_2O(g) \rightarrow 2H_2O(I)$

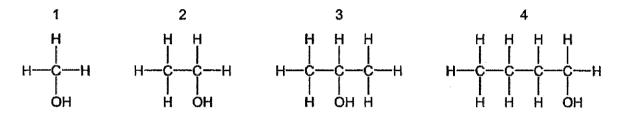
Which stages are endothermic?


- A 1 only
- B 2 only
- C 1 and 3 only
- **D** 1, 2 and 3

- 30 Which is the overall equation for the reactions that take place in a hydrogen fuel cell?
 - A H₂ → 2H⁺ + 2e⁻
 - **B** $2H_2 + O_2 \rightarrow 2H_2O$
 - C $2H_2O \rightarrow 2H_2 + O_2$
 - D 2H⁺ + 2e⁻ → H₂
- 31 A student performs two reactions.

Reaction 1: 10 g of magnesium ribbon with 0.5 dm³ of 2.0 mol/dm³ dilute hydrochloric acid Reaction 2: 5 g of magnesium powder with 0.5 dm³ of 3.0 mol/dm³ dilute hydrochloric acid

In both experiments, the volume of hydrogen produced is measured against time and the results are plotted graphically.


Which graph is correct?

32 Powdered manganese(IV) oxide acts as a catalyst in the decomposition of aqueous hydrogen peroxide.

Which statement explains why the rate of production of oxygen decreases during the reaction?

- A The concentration of aqueous hydrogen peroxide decreases.
- **B** The mass of manganese(IV) oxide decreases.
- **C** The surface of manganese(IV) oxide decreases.
- **D** The temperature of aqueous hydrogen peroxide decreases.
- 33 The structures of four alcohols are as shown.

Which statement is correct?

- A Alcohol 1 can be made by the addition of steam to an alkene.
- **B** Alcohol 2 is a product of fermentation.
- C Alcohol 3 can undergo oxidation to form C₃H₇CO₂H.
- D Alcohol 4 has only one other isomer.
- 34 The structures of three compounds are as shown.

Why do these compounds all belong to the same homologous series?

- A They are all saturated.
- B They are all hydrocarbons.
- C They all contain the same functional group.
- **D** They all contain an even number of carbon atoms.

17

Swiss Cottage Secondary School / Chemistry Paper 1 / 4 Express / Prelim Exam 2024

35 The diagram shows the structure of a compound Z.

Which prediction about its properties is not likely to be correct?

- A It can react with zinc to liberate hydrogen gas.
- **B** It can turn acidified potassium iodide solution from colourless to brown.
- C It can undergo addition polymerisation.
- **D** It can undergo condensation polymerisation by itself.
- 36 The ester, CH₃CO₂CH₂CH(CH₃)CH₂CH₃, has an odour of bananas.

Which set of reagents could be used to prepare this ester in the laboratory?

	reagent 1	reagent 2
Α	CH ₃ CH ₂ CH ₂ CH(CH ₃)CH ₂ CO ₂ H	СН₃ОН
В	CH₃CH₂CH(CH₃)CH₂OH	CH₃CO₂H
С	CH3CH2CH(CH3)CH2CO2H	СН₃ОН
D	CH ₃ CH ₂ CH(CH ₃)CH ₂ OH	CH₃CH₂CO₂H

37 The molecular formula of an organic acid is as shown.

Which structure is not an isomer of this acid?

Polyethenol is a new plastic which is water soluble. This plastic is useful in hospitals for keeping soiled laundry and thereby preventing infection. The dirty laundry is then placed in the wash and the bag dissolves letting the washing out.

The structure of polyethenol is as shown.

What is the monomer unit for this polymer?

HO OH H

$$C = C$$
 $C = C$
 C

In an artificial hip joint, bone cement is used to attach the poly(ethene) cup for the joint to the pelvic girdle. Bone cement is formed by the polymerisation of methyl 2-methylpropenoate. The process is highly exothermic.

The structure of methyl 2-methlypropenoate is as shown.

Which statements are correct about this polymerisation?

1 The repeat unit of the polymer is

- 2 The formation of the cement occurs by addition polymerisation.
- 3 Less energy is released in making the C C bonds than absorbed in breaking a C = C bond.
- A 1 and 2 only
- B 2 and 3 only
- C 1 and 3 only
- **D** 1, 2 and 3
- 40 To reduce atmospheric pollution, the waste gases from a coal-burning power station are passed through powdered calcium carbonate.

Which waste gas will **not** be removed by the powdered calcium carbonate?

- A carbon dioxide
- **B** nitrogen monoxide
- C phosphorus oxide
- D sulfur dioxide

21
Swiss Cottage Secondary School / Chemistry Paper 1 / 4 Express / Prelim Exam 2024

		- 44	2 무	belium 4	6	u.	fluorine 19	11	Ö	35.5	35	ă	oroman 80	53	1-4	e light	127	g *	į į	1	117	<u>s</u>	n tennessalne o	-
		15 16			_			┼	••••	phosphorus suitur 31 32				_			+			-	-		æ E	4
		# (6	ပ	to Ct	4	ত	silcon 28	32	ී	germanium 73	50	တ်	5	119	2 6	2 3	207	114	ï	ferowinm	t
		1 3			LC)	00	baron 11		₹	etominium 27	8	සු	gallkum 70	45	Ę	indiam	115	ā F	The filtred	204	113	ź	Reinchium	1
ents										12	೫	占	z. 65	84	8	radminm m	112	3 5	֝֞֞֞֝֟֞֞֝֞֟֞֝֟֞֓֓֓֞֟֞֓֓֓֓֓֞֟֞֓֓֓֓֓֓֓֓֓֞֟	201	112	ნ	copernicium	1
The Periodic Table of Elements		:								**	58	ರ	64 Page	47	Ā		108	2 2	2 3	19	111	8	roembenium	1
ible of	Group									5	28	Z	Sp es	46	2	palledium	2	e ā	T I	195	110	ద	Chritestacklun	ı
dic Ta	Ö				1					o n	27	ප	Sebat 59	45	뜐	rhodium	103	<u> </u>	1.	192	109	₹	meinerium	ŀ
Perio			~I	hydrogen 1						æ	56	ů.	, S	44	22	rutharien	5	ج ج	3	66	108	£	medalum	ı
The					_			···1		^	25	ž	manganese 55	43	ပ	Pachnetium	1	٤٤	D .	186	107	듒	bahriture	1
					number	<u>log</u>	a)ee			æ	24	ඊ	chromium 52	2	Š	molybdenum	8	Z §	A	<u> </u>	108	Š	seeborg/um	1
				Key	proton (atomic) nu	atomic symb	name refotive atomic m			S	23	>	variadium 51	4	ĝ	nichium	83	24	N	181	5			_
					proton	B	relear telear			4	22	۳	Usakim 46	9	7	zirconium	6	23		178			numenfordium	ı
										ო	21	တ	ecandium 45	39	>	ythrash	68	57-74 ferrithmosids			89103	actinoide		
		2			*	@	barylinen O	12	2	magnesium 24	20	පී	calcium 40	38	ഗ	etrontium	88	9 6	ָ מ	137	88	χ.	radium	į
		***			643		III Peum	-	Z	23	19	¥	potate/um 39	37	2	mbidian	82	is d	3	133	87	<u>L</u>	francium	

,				····				
7.1	2	1. Internation	175	103	בֿ	May remove mozumes	1	
70	Ϋ́	ytterbium	173	102	ž	mobalium	1	
69	ᄩ	Thefium	169	101	Md	mendalevari	ļ	
68	ய்	erbissm	167	100	표	termium	1	
67	욷	MORTH, M.	38	66	Вŝ	einsteinium	Ì	
99	5	dysproxime	<u>ස</u>	98	៊	californium	1	
65	<u>e</u>	(Arthum	159	97	ŏ	Dorkelium	ł	
29	පි	gadolinkum	157	96	క్	canten	ı	
63	ш	eceppine	152	38	Am	amenchun	j	
62	SB	S.emanum	150	80	2	plutonium	1	
61	F	promethium	ì	93	ž	neptunium	1	
L	2	£						
83	ď	presencymium	14	91	Pa B	protectimism	231	
82	පී	cerimus	9	8	£	thorium	232	
27	<u>_</u>	ienthurum	139	83	Ac	actinium	1	
	lanthanoide				artinoire			

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.tp.). The Avogadro constant, $L = 6.02 \times 10^{24} \, \text{mol}^{-1}$.

BLANK PAGE

SWISS COTTAGE SECONDARY SCHOOL SECONDARY FOUR O LEVEL PRELIMINARY EXAMINATION PURE CHEMISTRY Paper 1 MCQ

1	В	21	В
2	В	22	В
3	C	23	В
4	В	24	D
5	D	25	A
6	D	26	D
7	A	27	В
8	A	28	A
9	С	29	A
10	В	30	В
11	C	31	С
12	В	32	A
13	В	33	В
14	С	34	С
15	C	35	В
16	В	36	В
17	D	37	D
18	D	38	С
19	D	39	A
20	D	40	В

SWISS COTTAGE SECONDARY SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATION

Name		Academic Class	4	Α	
	Form Class Index Number	Form Class	4	S	
CHEMISTRY				6092/	02
Paper 2		Wednesda	y 28 <i>A</i>	August 20)24
			1 hou	r 45 minu	tes
No Additional Materials are required.					

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided on the Question Paper.

Section B

Answer one question.

Write your answers in the spaces provided on the Question Paper.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use				
Section A	/ 70			
Section B	/ 10			
Total	/ 80			

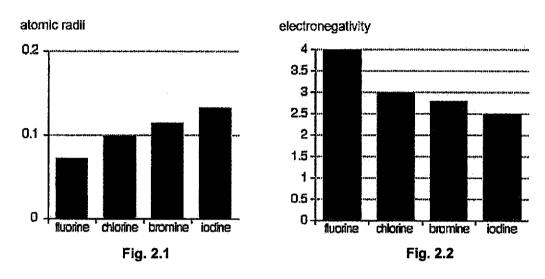
This document consists of 23 printed pages and 1 blank page.

[Turn over

Home of Thoughtful Leaders: Serve with Honour, Lead with Humility

Section A

Answer all questions.


A1 Use the list of elements to answer the questions.

	zinc	argon	Tiuorine	copper
	hydrogen	sodium	silicon	carbon
Each	element may be used once,	more than once or not a	t all.	
(a)	Name the element that forms	s an amphoteric oxide.		
				[1]
(b)	Name the element that can f	orm ions with more than	one oxidation state.	
				[1]
(c)	Name the element that can f	orm a neutral oxide.		
				[1]
(d)	Name the element that is un	reactive.		
				[1]
(e)	Name the element that is a g	good oxidising agent.		
		,		[1]
(f)	Name the element that forms	s an oxide with a giant o	ovalent structure.	
				[1]
				[Total: 6]

A2 (a) Fig. 2.1 and Fig. 2.2 show some properties of Group 17 elements, the halogens.

Fig. 2.1 shows the atomic radii and Fig. 2.2 shows the electronegativity of the Group 17 elements.

Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons. It is usually measured on the Pauling scale, on which the most electronegative element (fluorine) is given an electronegativity of 4.0.

(i)	Use Fig. 2.1 to describe and explain the trend in atomic radii for halogens down the group.
	[1]
(ii)	Use Fig. 2.1 and Fig. 2.2 to state and explain the relationship between atomic radii and electronegativity of the halogens.
	[1]
(iii)	Predict and explain the electronegativity value of astatine, the next member of Group 17 element.
	[41]

(b) Table 2.1 shows the melting points and boiling points of Group 1 elements, together with the atomic radii.

Table 2.1

	element	melting point / °C	boiling point / °C	atomic radii / pm
	lithium	180	1330	145
	sodium	98	890	180
Group 1	potassium	64	774	220
	rubidium	39	688	235

(i)	State the trend observed in the melting and boiling points of Group 1 ele	ments.
		••••
		[1]
(ii)	Explain, in terms of bonding, the trend observed in (b)(i).	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	•••••	[2]
		[Total: 6]

A3 Table 3.1 shows some properties of oxyacids of chlorine.

Table 3.1

name of acid	chemical formula	reaction with magnesium (all acids have the same concentration)	oxidation state of chlorine
hypochlorous acid	HC/O	only a few bubbles seen	
chlorous acid	HC <i>I</i> O₂	reacts readily	
chloric acid	HC/O ₃	vigorous	
perchloric acid	HC/O ₄	very vigorous	

(a)	Suggest why these acids are known as oxyacids.	
		••••••
		[1]
(b)	Complete Table 3.1 by filling in the oxidation states of chlorine.	[2]
(c)	State the relationship between the oxidation state of chlorine and the strength of the	acids.
	Explain your reasoning using the information in Table 3.1.	
		[2]
(d)	Identify the acid with the lowest electrical conductivity.	
	Explain your answer.	
		[1]

[Total: 6]

A4	(a)	Ammonia is produced by nitrogen gas and hydrogen gas during the Haber process

(i)

Since nitrogen is the most abundant gas in air, explain why air is not used as a raw material during the Haber process.
[1]

(ii) Concentrated aqueous ammonia is used to make fertilisers such as ammonium sulfate, (NH₄)₂SO₄. Aqueous ammonia reacts with dilute sulfuric acid to form ammonium sulfate, (NH₄)₂SO₄.

$$2NH_3(aq) + H_2SO_4(aq) \rightarrow (NH_4)_2SO_4(aq)$$

A student titrates 20.0 cm³ of aqueous ammonia with 0.150 mol/dm³ sulfuric acid. 10.50 cm³ of sulfuric acid is required to neutralise the aqueous ammonia. Calculate the concentration, in mol/dm³, of the aqueous ammonia.

(b) Table 4.1 shows some fertilisers that are necessary for healthy plant growth. Some of the elements needed by plants are nitrogen, potassium and phosphate.

Table 4.1

type of fertiliser	chemicals commonly	y used
potassium-based fertilisers	potassium chloride	KC <i>i</i>
nitrogen-based fertilisers	ammonium nitrate	NH ₄ NO ₃
	urea	CO(NH ₂) ₂
phosphate fertilisers	calcium dihydrogen phosphate	Ca(H ₂ PO ₄) ₂
	calcium sulfate	CaSO₄

Calculate the percentage by mass of nitrogen in ammonium nitrate and urea to determine which fertiliser would give more nitrogen per kg.

A chemical company makes salts for use in fertilisers.	[2]
To make calcium sulfate, the company started with limestone, which is calcium carbona Briefly describe how pure calcium sulfate can be made from calcium carbonate.	te.
	.4]
[Total:	7]

(c)

A5 A mixture of grey powder and white crystals undergoes a series of reactions as shown in Fig. 5.1.

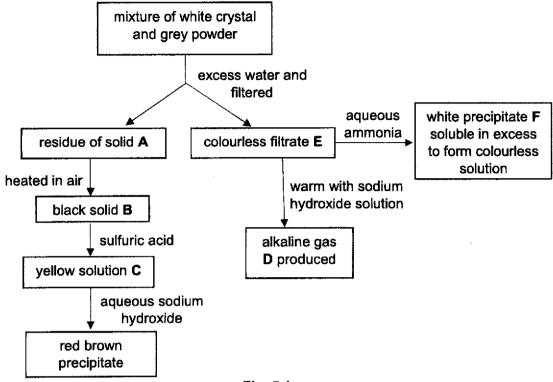


Fig. 5.1

(a)	Identify substances A, B, C and D.
	A
	В
	C
	D[4]
(b)	There are two cations present in filtrate E. Give the formulae of the two cations present in filtrate E.
	[1]
(c)	Write the ionic equation for the formation of precipitate F.
	[1]
(d)	To test for the anion present in filtrate E, a student added acidified silver nitrate solution to a sample of E. No visible change was observed. What can be concluded from this statement?
	[1]
	[Total: 7]

[Total: 6]

A6 Many metal carbonates thermally decompose to form carbon dioxide and metal oxide. Four 2.00 g samples of carbonates are heated strongly until there is no further change in their masses.

Table 6.1 shows the mass of solid remaining at the end of the heating.

Table 6.1

metal carbonate	mass before heating / g	mass after heating / g
calcium carbonate	2.00	1.12
copper(II) carbonate	2.00	1.29
magnesium carbonate	2.00	0.95
zinc carbonate	2.00	1.35

(a) Calculate the percentage yield of carbon dioxide formed when 2.00 g of zinc carbonate is heated.

	[3]
(b)	Explain why the mass of carbon dioxide formed is different for each metal carbonate.
	[1]
(c)	In two separate experiments, hydrogen was passed over heated aluminium oxide and heated copper(II) oxide. Describe the observation, if any, you would expect to see in each experiment. Explain your reasoning.
	·
	[2]

A7 A student electrolysed aqueous copper(II) sulfate using the set-ups shown in Fig. 7.1. The electrodes used in each apparatus are made of the same material. However, the electrodes used in experiment 1 and 2 are made of different materials

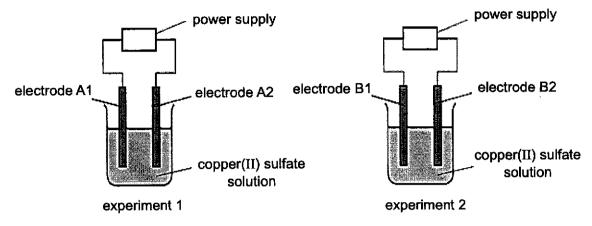


Fig. 7.1

He recorded the observations in Table 7.1.

Table 7.1

experiment 1	experiment 2
mass of electrode A1 has increased	mass of electrode B1 has increased
mass of electrode A2 remains the same	mass of electrode B2 has decreased
effervescence observed at electrode A2	no effervescence observed at electrode B2

(a)	State which electrode is the cathode in	each experiment.	
	experiment 1 :	experiment 2 :	[1]
(b)	Explain, with an appropriate equation, t	he increase in mass at electrodes A1 and B1.	
	***************************************		•••••
			•••••
			•••••
			[2]
(c)	Write the half-equations of the reactions	s taking place at electrode A2.	
			[1]

(d)	Universal Indicator is added to the solution after the electrolysis in experiment 1.
	Predict the pH and colour of the Universal Indicator in experiment 1.
	colour of Universal Indicator in experiment 1
	pH of electrolyte in experiment 1
	Explain your reasoning.
	[3]
	[Total: 7]

A8 Fig. 8.1 shows the apparatus used to investigate the relative reactivity of metals, A, B, C and D. The metal strips and copper were first cleaned with sandpaper. The metal strips were connected in turn with the copper strip and the voltage was recorded.

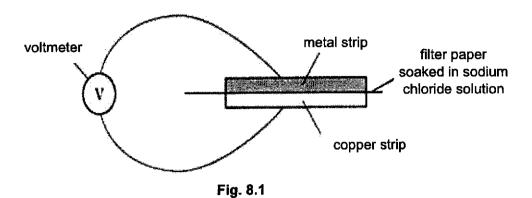


Table 8.1 shows the results.

Table 8.1

metal strip	direction of electron flow	voltage / V
Α	from copper to metal A	0.78
В	from metal B to copper	2.22
С	from metal C to copper	1.39
D	from metal D to copper	0.28

a)	Use the results in Table 8.1 to deduce the order of reactivity of these four metals and cop	per.
	most reactive	
	•••••••••••••••••••••••••••••••••••••••	
	least reactive	[2]
(b)	Given that metal C is an element in Group 2 of the Periodic Table and does not react re with water, describe two observations you would expect to see if metal C were added copper(II) sulfate solution.	adily ed to
	observation 1:	
	observation 2:	
		[2]

(c)	Predict and explain the voltage reading if the experiment with metal A and copper were repeated using a piece of filter paper soaked in ethanol instead of sodium chloride solution.
	voltage reading =
	[1]
	[Total: 5]

BLANK PAGE

Nam	e:				_ ()	Class:	4S	/ 4A					
609	limina 2 CHI condar	EMIST												
A 9		ingapo oleum		homes, there are	two typ	es of sup	plied gas: pip	oed ga	s or liquidfied					
	whe	never	you turn on the	ogen gas and is de gas stove, whereas es in gas cylinders.										
	(a)	Write		Irogen gas gives uation for the comb										
			•••••	• • • • • • • • • • • • • • • • • • • •			••••	•••••	[2]					
	(b)	The	enthalpy change	for the combustion	n of one	mole of p	ropane is – 2	025 kJ/	mol.					
		$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$ $\Delta H = -2025 \text{ kJ/mol}$												
		(i)	Explain, in ten	ms of bond forming	and bor	nd breakin	g, why the co	mbusti	on of propane					
			*************		*******			••••••						
			***************************************					•••••	••••••••••					
				· · · · · · · · · · · · · · · · · · ·				•••••	[2]					

	(ii) Draw the energy profile diagram for the combustion of propa	ne.
	energy	
(c)	Suggest one advantage for using each type of gas.	progress of reaction [2]
	liquidfied petroleum gas:	[1]

A10 Co-ordinate Bonds

In 1913, the Bohr model was introduced to explain the structure of an atom. Based on the Bohr model, an atom consists of a small, dense nucleus surrounded by electrons in fixed orbits.

The Bohr model also shows the formation of a simple covalent bond as the sharing of a pair of valence electrons from two atoms. A co-ordinate bond is a covalent bond in which both electrons come from the same atom.

An example of a co-ordinate bond can be found in the ammonium cation. Ammonium ion is formed when ammonia gas reacts with hydrogen chloride. During the reaction the H⁺ ion will attach to ammonia forming ammonium ion while the electron from hydrogen remains on the chlorine atom to form a chloride ion.

$$NH_3 + HCl \rightarrow NH_4Cl$$

The co-ordinate bond is represented by an arrow in the structural formula, pointing from the atom that contributes the pair of electrons to the other atom. The structural formula of ammonium cation is as shown in Fig. 10.1.

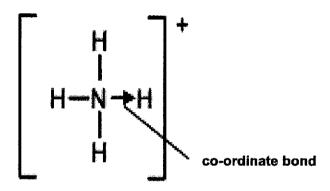


Fig. 10.1

Ligand Exchange Reactions

Ligands are ions or molecules that bind to a central metal atom to form a complex metal ion. The ligand shares one of its electron pair with the central metal atom, forming a co-ordinate bond.

In general, the cations involved in qualitative analysis are considered as complex metal ions. For example, in a beaker containing CuSO₄ solution, water acts as a ligand, sharing one electron pair with Cu²⁺ ion, forming a complex ion of copper(II) with molecular formula $[Cu(H_2O)_6]^{2+}$. The structural formula of $[Cu(H_2O)_6]^{2+}$ is as shown in Fig. 10.2.

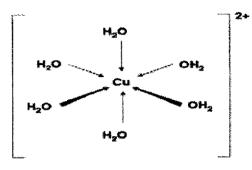


Fig. 10.2

When a small volume of aqueous sodium hydroxide is added to a solution of copper(II) ions, a complex, light blue precipitate of $Cu(H_2O)_4(OH)_2$ is formed. The molecular formula of the precipitate remains the same when excess aqueous sodium hydroxide is added.

When a small volume of aqueous ammonia is added to a solution of copper(II) ions, $Cu(H_2O)_4(OH)_2$ is formed, containing four H_2O ligands and two OH^- ligands. When aqueous ammonia is added in excess, four ammonia ligands replaces two OH^- ligands and two H_2O ligands.

(a) (i) Draw the dot-and-cross diagram of ammonium chloride, showing only the outer shell electrons.

[2]

(ii) Given that there is only one co-ordinate bond formed from the reaction between ammonia and boron trifluoride, draw the structural formula of the product, NH₃BF₃.

(D)	(1)	ions until there are no further changes.
		[2]
	(ii)	Suggest the molecular formula of the complex ion of copper($\!\!\!\!\mathrm{II}\!\!\!\mathrm{I}$) after adding excess aqueous ammonia.
		[1]
	(iii)	Draw the structural formula of the complex ion of copper(${\rm II}$) after adding excess aqueous ammonia.
		[2]
(c)	(i)	Suggest the molecular formula of the complex ion of iron(II) after adding excess
\ -,	(7	aqueous ammonia.
		[1]
	(ii)	With reference to the complex ions of both metals, explain the difference in observations when excess aqueous ammonia is added to copper(II) and $iron(II)$ solutions in separate test tubes.
		[1]
	(iii)	Green precipitate formed after adding aqueous sodium hydroxide to iron(II) solution. After a while, It was observed that the surface of the green precipitate in the test tube turns red-brown. Explain the observation.
		[2]

Section B

Answer one question from this section.

B11 Alkenes and alkynes are two homologous series of hydrocarbons. These hydrocarbons are sometimes obtained from the fractional distillation of crude oil. Table 11.1 shows the structural formulae of the first four members of alkynes.

Table 11.1

alkyne	structural formula
ethyne	H-C≡C-H
propyne	H-C=C-C-H H
but-1-yne	H-C≡C-C-C-H H H
pent-1-yne	H H H H - C = C - C - C - C - H H H H

(a)	 Ethyne and propyne are unsaturated hydrocarbons. Both have the same gene 									
	(i)	Explain what is meant by 'ethyne and propyne are unsaturated hydrocarbon'.								
	(ii)	Deduce the general formula of alkynes.								
			.[1]							
	(iii)	Draw the full structural formula of the fifth member of the alkyne homologous serie	S.							

(b)	The chemical	reactivity of	of alkynes	is	similar	to	alkenes
(~)	riio onomioa	I COCCUPILY C	JI GIINYIIOG	:-	311111111111111111111111111111111111111	···	anciico

(i) When propyne reacts with chlorine gas, the reaction is similar to reaction with aqueous bromine, a mixture of organic compounds are formed. One compound is able to decolourise aqueous bromine while the other does not. Draw two possible full structural formulae of these organic compounds.

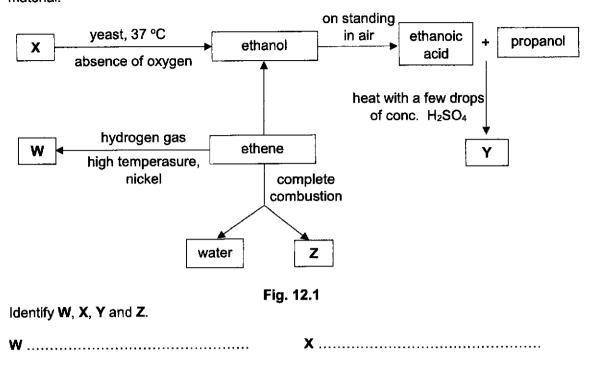
[2]

(ii) X is an isomer of pent-1-yne that can form a polymer. Part of this polymer structure is shown in Fig. 11.1.

$$CH_3$$
 CH_3 CH_3 CH_3 $-C = C - C = C - C = C - C = C - C = C - C = C - C_2H_5$ C_2H_5 C_2H_5 C_2H_5 C_2H_5

State the type of polymerisation that X can undergo and draw the full structural formula of this isomer.

.....[2]


(iii) One of the organic compounds formed in (b)(i) continues to react with chlorine gas and formed a mixture of organic molecules when exposed to ultra-violet light. Draw the full structural formulae of a product formed. Name the product you have drawn.

name of organic compound:[2]

[Total: 10]

[4]

B12 (a) Fig. 12.1 shows various reactions involving organic compounds, with ethene as the starting material.

(b) Fumaric acid is a white crystalline chemical compound which can be extracted from plants. When solid fumaric acid is dissolved in water, a colourless solution is formed. Fig. 12.2 shows the structural formula of fumaric acid.

Υ

Z

Fig. 12.2

(i) Describe what you would observe when aqueous fumaric acid is added to bromine solution and draw the **full structural formula** of the product formed.

 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
 	 [2]

Fumaric acid can undergo condensation polymerisation with ethane-1,2-diol to form polymer \mathbf{M} . Fig. 12.3 shows the structural formula of ethane-1,2-diol. (ii)

		HOC
		Fig. 12.3
		Name the linkage present in M.
		[1]
(c)	Fuma Polyr dispo	ner N is non-biodegradable and can possibly pose problem to our environment during
	(i)	Draw the structure of polymer N, showing two repeating units.
		[1]
	(ii)	Define non-biodegradable.
		[1]
	(iii)	Suggest a possible problem that polymer N can pose to our environment during disposal.
		[1]

[Total: 10]

ম
ె
₾
Ε
<u>•</u>
1
4
0
0
Ω
Ø
<u>.0</u>
ਰੁ
2
ā
ے
a
ž

					T	*****	*****								*******						1	St 15040x 170						5	
	, 8	7	<u>D</u>	The Figure	ţ	2 ;	Š	5 (e)	2	<u>0</u>	₹	uodys	€	36	궃	roypton	8	ጀ	×	Xency	131	හ	뜐	ropes	ı	118	ő	ogamesta	1
	17				c	ומ	u.	Aucrine	19	4	ొ	chlorine	35.5	35	ሟ	bromine	80	S,		eulpoi i	127	8	Αŧ	Bataline	-	117	<u>~</u>	termessine	1
	.6				٥	φ.	0	шебхо	16	9	ဟ	Jagan e	32	\$	တိ	Spile riking	79	ß	ڡؚ	teflunum	128	\$	2	polonium	1	116	ځ	Ivermorium	ţ
	15					• ;	Z	nirogen	14	₩.	<u>a</u>	anoudsoud	3.1	33	As	Bramenic	75	2	හි	antimony	122	æ	菡	bismuth	209	115	Š	moscowium	1
	14				9	۵	ပ	carpon	12	14	S	alican	28	32	ල	germanium	73	ଝ	ည်	£	119	82	8	pres	207	114	F	Renovium	ł
	13				-	ก	മ	boron	-	13	¥	mammam	27	31	ශී	Quellum Quellum	02	49	Ę	Indium	115	2	=	Pallian	200	113	Ę	nihonium	1
					L							4	16	30	Zu	zinc	65	\$	ප	Cadmium	112	8	Ŧ	mercury	201	112	გ	copernicium	1
												Ť		53	ਠੋ	recdoo	40	47	Ą	Series Series	108	79	Α̈́	poo	197	111	8	roentgenium	1
dn												4	2	28	Ż	nickel	20	46	2	pelledium	106	8/	岙	platinum	195	110	ő	darmsladtium	ŀ
Group												0	b	27	ပိ	cobalt	59	45	줃	rhodium	103	11	<u></u>	right	192	109	Ī	meimerium	,
		-	I	hydrogen	_							a	0	5 2	æ	Ē	56	44	2	rutherium	101	9/	ဝိ	Carrier.	190	108	£	hassium	1
												٢	-	25	Z	manganese	55	43	ပ	technolium	I	75	8	marken	186	107	듑	bohrium	1
						umber	200		mass			4	Þ	24	ර	chomism	25	42	ş	matchdenum	88	74	≥	tungsten	184	106	တိ	seaborgium	ŧ
				Ken	rey.	proton (atomic) numbei	atomic symbol	rame	re atomic (u	Ö	23	>	vanadium	51	41	£	mobium	69	73	<u>_a</u>	tantalum	181	105	2		
						proton (;	ato		relative			*	†	22	F	titanium	48	6	7	zirconium	20	72	Ξ	hatrium	178	5	ř	nutherfordium	1
										-		r	7	21	လ	scandium	45	39	>	yttrium	68	57-71	Enthanoids			89-103	actinoida		
	2				The second secon	4	8	Deryffum	Φ	12	Ž	magnesium	24	8	ප	calcium	9	88	ري م	#TOROTO	88	88	Ba	perfram	137	88	6 6	radium	#
	-	The second secon			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	m	_	Engla	~	11	Z	mypos	R	19	×	Dofessaum	6E	37	윤	rubidium	& S	55	ථ	Editor	133	87	证	fancium	ŧ

	57	28	69	8	61	62	63	42	93	99	67	68	69	20	71
bothonoide	G	පී	à	Ž	Ę	Sm	₫	ල	2	õ	운	ŭ	Ē	₽	3
	Landhanum	Cerium	praseodymium	neodymlum	promethium	Samarium	européum	gedolinium	terbium	dysprogram	holmium	erbium	thulium.	yfterbium	Autherblam
	139	140	14.	144	ı	150	152	157	159	163	165	167	169	173	175
	68	S	91	82	83	94	95	96	97	86	66	100	101	102	103
potinoide	Ş	£	Ç	>	Š	<u>a</u>	Am	Ę	益	ర	ű	Ē	₽	ĝ	ت
	setinium	(horium	protectinium	majudan	neptuniam	photonium	americium	CURICIA	berkelium	californium	einsteinium	(Permitty)	mendelevium	nobelium	lawnenchm.
	1	232	231	238	1	-	1	ı	'	1	-	1	-	•	ı

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L=6.02\times10^{23}$ mol⁻¹.

Swiss Cottage Secondary School Preliminary Examination 2024 Secondary Four (O Level) Chemistry 6092 (Mark Scheme) – Paper 1 & 2

Paper 1 (40 marks, [1] per qn)

1	В	21	В
2	В	22	В
3	С	23	В
4	В	24	D
5	D	25	A
6	D	26	D
7	A	27	В
8	A	28	A
9	C	29	A
10	В	30	В
11	С	31	C
12	В	32	A
13	В	33	В
14	С	34	С
15	C	35	В
16	В	36	В
17	D	37	D
18	D	38	С
19	D	39	A
20	D	40	В

Paper 2 Section A: 70 marks

Qn	No.	Answer half-	marks markers'	comment.
A 1	(a)	zinc	[1]	
	(b)	copper / hydrogen	[1]	
	(c)	hydrogen / carbon	[1]	
	(d)	argon	[1]	
	(e)	fluorine	[1]	
	(f)	silicon	[1]	
		Total		
A2	(ai)	The atomic radii increase down the group due to the increase in the number of electron shells [1] to hold the electrons, thus resulting in a bigger atom.	[1]	
	(aii)	The atomic radii increase while electronegativity decreases as it is harder for the nucleus to attract electrons to itself. [1]	[1]	
	(aiii)	2.25 (accept value between 2.0 to 2.3). It has a larger atomic radii compared to the elements above it in the group. Since the nucleus is further away from the valence shell, it is harder for the nucleus to attract electrons. [1]	[1]	
	(bi)	Melting point and boiling point decreases down the group	[1]	····
	(bii)	As the atomic radii increases down the group, the negatively-charged valence electrons are further away from the positively-charged nucleus. The electrostatic forces of attraction between valence electrons and the nucleus becomes weaker. [1] Less energy is required to overcome the metallic bonding/forces of attraction [1] between the valence electrons and the nucleus.	[2]	
		Total	. [6] by the substitution of the substitution of the	
А3	(a)	It is because the acid contains oxygen and can dissociate/ionise in aqueous solution to form H* ions.	[1]	
	(b)	name of acid oxidation state of chlorine	[2]	
		hypochlorous acid +1		
		chlorous acid +3		
		chloric acid +5		
		perchloric acid +7		
		Every 2 correct answer [1m]		

	(c)	As the oxidation state of chlorine increases, the strength of acid increases. [1] When oxidation state of chlorine increases from +1 to +7, the reaction between the acid and Mg become more vigorous. [1]	[2]	
	(d)	Hypochlorous acid / HC/O has the lowest electrical conductivity. It has the least vigorous reaction with magnesium and is therefore the weakest acid. This means that it must have the lowest concentration of mobile ions [1] to act as charge carriers.	[1]	
		- Inforal	[6]	
A4	(ai)	 Air is made up of a mixture of many gases, like oxygen and nitrogen. Hence oxygen can react with hydrogen to form water if air is used during Haber process. nitrogen reacts with oxygen to form oxides of nitrogen air contains oxygen which oxidises iron catalyst to iron(II) oxide/iron(III) oxide iron react with oxygen and water and rusting occurs. [choose any one point] 	[1]	
	(aii)	No. of mole of H ₂ SO ₄ $= \frac{10.5}{1000} \times 0.150$ $= 0.001575 \text{ mol}$ $\frac{No.of \text{ mole of NH}_3}{No.of \text{ mole of H}_2SO_4} = \frac{2}{1}$ No. of mole of NH ₃ = $\frac{2}{1} \times 0.001575$ $= 0.00315 \text{ mol}$ Concentration of NH ₃ = $\frac{0.00315}{0.002}$	[2]	
		= 0.1575 = 0.158 mol/dm³ (to 3.s.f) [1]		

	(b)	Mr of $NH_4NO_3 = 80$	[2]	
	•	% N in NH ₄ NO ₃ = 2(14) / 80 x 100% = 35.0% (to 3 s.f)		
	i	Mr of CO(NH ₂) ₂ = 60		
		%N in CO(NH ₂) ₂ = 2(14) / 60 = 46.667 = 46.7% (3 s f)		
	:	[1] for both correct %N		
		Hence, urea would give more nitrogen per kg. [1]		
	(c)	 Add excess calcium carbonate to nitric acid and stir. Filter the mixture to obtain a solution of calcium nitrate as the filtrate. Add the calcium nitrate solution to aqueous sodium sulfate/ sulfuric acid/ any solution with sulfates. Filter the mixture to obtain calcium sulfate as the residue. Wash the residue with distilled water and leave the residue to dry on filter paper. 	[2]	
		[1]: steps 1-2 [1]: step 3		
		Total		
A5	(a)	A: Iron / Fe [1]	[4]	
		B: Iron(III) oxide / Fe ₂ O ₃ [1]		
	<u> </u>	C: Iron(III) sulfate / Fe ₂ (SO ₄) ₃ [1]		
	į	D: Ammonia / NH₃ [1]		
-	(b)	Zn²+ and NH₄+	[1]	
	(c)	Zn ²⁺ + 2OH ⁻ → Zn(OH) ₂	[1]	
	·	{Note: Please follow instructions! State symbols are not required. Please do not include. If correct state symbols are given, no extra credit will be given. However, for incomplete or wrong state symbols, marks will be deducted.}		
	(d)	Cl ⁻ / chloride and I ⁻ / iodide are not present in the filtrate.	[1]	
3.40	4900	[2] 中國 [1] [1] [1] [2] [2] [2] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	- 77	三、野门州湖北海岸湖。晚季一次,

A6 (a)	ZnCO ₃ → ZnO + CO ₂	[3]	
	No. of mole of zinc carbonate $= \frac{\frac{2.00}{125}}{125}$ $= 0.016 \text{ mol}$ $\frac{No.of \text{ mole of } CO_2}{No.of \text{ mole of } ZnCO_3} = \frac{1}{1}$ [1]		
	No. of mole of $CO_2 = \frac{1}{1} \times 0.016$ = 0.016 mol		
	Mass of $CO_2 = 0.016 \times 44$ = 0.704g (to s.f.)		
E	Actual mass of CO ₂ produced [1] = 2.00 - 1.35 = 0.65g		
	% yield of CO ₂ $= \frac{0.65g}{0.704g} \times 100\%$ $= 92.330$ $= 92.3 \% (3 s.f) [1]$		
(b)	It is because different carbonates have different Mr values, hence the number of moles of carbonate present in the fixed mass of carbonate is also different. OR different metals in the various carbonates have different Ar values, hence the number of moles of carbonate present in the fixed mass of carbonate is also different. OR different Mr values mass of carbonates carbonate is also different. OR different metals in the carbonate of moles of carbonate present in the fixed mass of carbonate is also different.	[1]	
(c)	Observations: No visible change occurs when hydrogen was passed over heated aluminium oxide. Black solid turned pink / red-brown when hydrogen was passed over heated copper(II) oxide. [1] {Note: water droplets/ colourless liquid is not acceptable in this case. See remarks on the right.}	[2]	

		Explanations (method 1- displacement)		
		Hydrogen is less reactive than aluminium,		
1		so hydrogen is not able to displace		
		aluminium from aluminium oxide.		
		Hydrogen is more reactive than copper, so		
		hydrogen is able to displace copper from		
		copper(II) oxide. [1]		
		("to displace copper from copper(II) oxide"		
		here means "to form the copper metal from copper(II) oxide"}		
		coppering oxide 7		
		Explanations (method 2- reduction)		
		Hydrogen is less reactive than aluminium,		
		so hydrogen is not able to reduce aluminium	:	
		oxide to aluminium.		
		Hydrogen is more reactive than copper, so		
į		hydrogen is able to reduce copper(II) oxide		
		to copper [1]		
		("to reduce copper(ii) oxide to copper"		
		means to convert copper(II) oxide [before]		
		to copper (after!")		
l		had Badad sei sebestiti Batadad II I		
		Total	[6]	and the same of th
A7	(a)	Experiment 1: A1 Experiment 2: B1	[1]	
ļ	/b.\	Copper(II) ions (Cu ²⁺) gain electrons more	[2]	
1	(b)	readily than hydrogen ions (H ⁺), hence	[=]	
		copper(II) ions are reduced to form copper		
		solid.		
		OR		
		Copper(II) ions (Cu ²⁺) are preferentially		
		discharged over hydrogen ions to form		
		copper solid [1]		
		Cu-2t + Cor + Cu [4]		
		Cu²+ + 2e⁻ → Cu [1]		
	(c)	40H ⁻ → 2H ₂ O + O ₂ + 4e ⁻	[1]	
	(3)	21120 . 02 . 40	r - 1	
		(Note: Please follow instructions! State symbols are not		
		required. Please do not include. If correct state symbols are given, no extra credit will be given. However, for incomplete		
	1	or wrong state symbols, marks will be deducted.}		
	1		721	
1	/	1 Calaria a⊈ I aktoreal la diaadan in avet 11 ua d		
	(d)	Colour of Universal Indicator in expt 1: red	[3]	
	(d)	Colour of Universal Indicator in expt 1: red [1]	[၁]	
	(d)	[1]	[၁]	
	(d)	[1] pH of electrolyte in expt 1: pH <u>1</u> OR <u>2</u> [1]	[၁]	
	(d)	pH of electrolyte in expt 1: pH <u>1</u> OR <u>2</u> [1] OH ions and Cu ²⁺ ions are selectively	[၁]	
	(d)	pH of electrolyte in expt 1: pH <u>1</u> OR <u>2</u> [1] OH ions and Cu ²⁺ ions are selectively discharged (while H ⁺ and SO ₄ ²⁻ are not).	[9]	
	(d)	pH of electrolyte in expt 1: pH <u>1</u> OR <u>2</u> [1] OH ⁻ ions and Cu ²⁺ ions are selectively discharged (while H ⁺ and SO ₄ ²⁻ are not). This results in a higher concentration of H ⁺	[9]	
	(d)	pH of electrolyte in expt 1: pH <u>1</u> OR <u>2</u> [1] OH ions and Cu ²⁺ ions are selectively discharged (while H ⁺ and SO ₄ ²⁻ are not). This results in a higher concentration of H ⁺ ions than OH ions thus resulting in an acidic	[o]	
	(d)	pH of electrolyte in expt 1: pH <u>1</u> OR <u>2</u> [1] OH ⁻ ions and Cu ²⁺ ions are selectively discharged (while H ⁺ and SO ₄ ²⁻ are not). This results in a higher concentration of H ⁺	[o]	
	(d)	pH of electrolyte in expt 1: pH <u>1</u> OR <u>2</u> [1] OH ions and Cu ²⁺ ions are selectively discharged (while H ⁺ and SO ₄ ²⁻ are not). This results in a higher concentration of H ⁺ ions than OH ions thus resulting in an acidic	[0]	

A8	(a)	B most reactive	[2]	
	(-,	c	f—1	·
		D		
		copper		
		A least reactive		
		[1]: first 2		·
		[1]: next 3		
	(b)	Observation 1: Colour of solution will	[2]	
		change from blue to colourless./fades to		
		light blue [1]		
		Observation 2: Red-brown solid/pink solid		
		will be deposited. [1]		
	(c)	Voltage reading = 0.00 V / 0 V	[1]	
	1			
		Ethanol exists as molecules and does not have any mobile ions and mobile electrons		
		to act as charged carriers hence it cannot		
		conduct electricity. [1]		
A9	(a)	$2H_2 + O_2 \rightarrow 2H_2O \Delta H = -495 \text{ kJ/ mol or}$	[2]	
		$H_2 + \frac{1}{2}O_2 \rightarrow H_2O \Delta H = -247.5 \text{ kJ/ mol}$		
		correction equation [1] and ∆H [1]		
		ecf is given to AH based on the number of		
		moles of hydrogen stated in the equation.		
	(bi)	More energy is given off/released in bond	[2]	
	(2.)	forming of 3 mol of CO ₂ and 4 mol of H ₂ O	r—1	
		[1]		
		than energy is taken in/absorbed to break		
		the bonds in 1 mol of C ₃ H ₈ and 5 mol of O ₂ . [1]		
		[L'J		
	(bii)	A	[2]	
	(,		L3	
		//\		
		Energy / Adjvation energy / Ex		
		' C ₃ H _B (g) + 5O ₂ (g)		
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		3CO ₂ (g) + 4H ₂ O(g)		
		552/3/ 1145/3/		
		Progress of reaction		
	 	correct labels of reactants and products [1]		
		correct exothermic graph, activation(upward		1
		arrow label) and energy change (downward		<u></u>
		arrow) labelled [1]		
L				

	(c)	Piped gas: cleaner fuel as it only produces water as the only product / more convenient as the gas is on demand and you don't need to buy canisters / won't need to worry about the gas supply running out / takes up less space as don't have to install a bulky canister beneath the stove [1] Liquified petrol gas: generates more energy per mole of fuel as compared to piped gas/ more energy efficient [1]	[2]	
		Total	[8]	The state of the s
A10	(ai)	1m for each ions for each ion the number of valance shell must be completely filled.	[2]	
	(aii)	H F	[1]	
	(bi)	Light blue / blue precipitate formed. [1] Light blue precipitate dissolves in excess to form a dark blue solution. [1] Reject: Light blue/blue solution	[2]	
	(bii)	[Cu(H ₂ O) ₂ (NH ₃) ₄] ²⁺	[1]	
a service a service	(biii)	H ₃ N H ₂ O NH ₃ H ₃ N NH ₃ NH ₃ NH ₃ 1m correct ligands with correct direction of arrows, 1m correct charge	[2]	
	(ci)	Fe(H ₂ O) ₄ (OH) ₂	[1]	
	(cii)	$Cu(H_2O)_4(OH)_2$ forms $[Cu(H_2O)_2(NH_3)_4]^{2+}$ which is soluble in excess aqueous ammonia while $Fe(H_2O)_4(OH)_2$ is insoluble.	[1]	

320110111046	(cili)	When exposed to air/oxygen[1], green iron(II) hydroxide oxidises to form iron(III) hydroxide which is the red-brown precipitate. [1] Accept: iron(II) ions/iron/green precipitate oxidised	[2]	
Sect	ion B	Total	[12]	
B11	(ai)	Ethyne and propyne contain only hydrogen and carbon atoms [1] with carbon-carbon triple bonds. [1]	[2]	
	(aii)	C_nH_{2n-2} , where n = number of carbon atoms	[1]	
	(aiii)	H H H H H-C=C-C-C-C-H I I I H H H H	[1]	
	(bi)	C/ C/ H C/ C/ H H-C=C-C-H H-C-C-C-H H c/ c/ H	[2]	
	(bii)	H H H H-C-C=C-C-C-H H H H Pent-2-yne correct structure, bonding between C - C and C - H must be accurate [1] addition Polymerisation [1]	[2]	
	(biii)	C/ C/ H H-C-C-C-H C/ C/ C/ correct structure [1] pentachloropropane [1]	[2]	
	()	Total	[10]	
B12	(a)	W: ethane / C₂H ₆ [1]	[4]	
		X: glucose / C ₆ H ₁₂ O ₆ [1]		
		Y: propyl ethanoate / CH₃COOC₃H ₇ [1]		
		Z: carbon dioxide / CO ₂ [1]		

	(bi)	H-O-C-C-C-C-C-O-H Br Br The bromine solution will turn from reddishbrown to colourless. correct observation [1] and structural formula [1]	[2]	
	(bii)	Ester linkage	[1]	
	(ci)	Соон соон соон 	[1]	
		reject if bonds are not correctly drawn		
	(cii)	Substances that cannot be decomposed or broken down by bacteria or natural biological processes into simpler substances.	[1]	
	(cili)	It will cause land pollution as plastic do not decompose hence burying plastic waste in land fills leads to an increase amount of built-up waste, or Water pollution, plastic thrown into the sea	[1]	
,		endanger marine animals. or		
,		Air pollution, plastics are mostly flammable, when plastics are incinerated, the produces air pollutants.		
, , , , , , , , , , , , , , , , , , ,		Incineration of polymer produces carbon dioxide which is green house gases leads to global warming.		
		Reject if students just state land pollution/water pollution/air pollution.		
		(any one)		
		Total	[10]	Market British