Full Name	Class Index No	Class

Anglo-Chinese School (Parker Road)

PRELIMINARY EXAMINATION 2024 SECONDARY FOUR EXPRESS / FIVE NORMAL (ACADEMIC)

MATHEMATICS 4052 PAPER 1

2 HOURS 15 MINUTES

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks. The total of the marks for this paper is 90.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

For Examiner's Use

Anglo-Chinese School (Nacker Road)

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area
$$=\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

$$\sqrt{0.81}$$
, 0.902, $\frac{399}{441}$, $0.86^{\frac{2}{3}}$

Write as a single fraction in its simplest form $\frac{7x}{(x-5)^2} + \frac{1}{5-x}$.

3 The capacity of a SD card is 250 gigabytes correct to 2 significant figures. The size of a picture file is 2.5 megabytes correct to 1 decimal place.

Calculate the largest number of files that can be stored in this SD card. Give your answer in standard form, correct to 3 significant figures. (1 gigabyte = 10^9 bytes, 1 megabyte = 10^6 bytes)

1 . 4			an r	40 ()
Anglo-01	rinese S	:pool ()	warket ,	1 (0a0)

4 Simplify $\frac{5c}{2} \div \frac{20c^2}{d}$.

Answer		[2]
--------	--	-----

5 y is directly proportional to x^2 . If x is increased by 200%, find the percentage increase in y.

Answer		%	[2]
--------	--	---	-----

A sum of money was divided between Amelia, Brandon and Claire in the ratio 2:3:4. If instead, this money had been divided equally between them, Amelia would have received an extra \$20.

What was the total sum of money?

Answer	\$ 	[2]

7 (a) Solve the inequalities $-8 \le 2 - 3x < 7 - \frac{1}{2}x$.

Answer	[2	2]
--------	----	---	---

(b) Write down all the integers that satisfy $-8 \le 2 - 3x < 7 - \frac{1}{2}x$.

Inswer	٢1	1	
	L -	Į,	

8 (a) On the Venn diagram, shade the region which represents $A \cup B'$.

[1]

(b)
$$\xi = \{\text{integers } x : 1 \le x \le 12\}$$

 $A = \{2, 3, 5, 7, 11\}$
 $B = \{3, 6, 9, 12\}$

This information is shown on the Venn diagram.

Use one of the symbols below to complete each statement.

$$\emptyset \in \subset \not\in \not\subset$$

9 The diagram represents a plot of land, ABCD, which is to be used for a park.

(a) Construct the bisector of angle ABC.

[1]

(b) Construct the perpendicular bisector of AD.

[1]

- (c) A toilet is to be built in the park, nearer to A than to D and nearer to BC than to AB. Shade the region where the toilet is to be built.
- 10 Using factorisation, solve $6p^2 9p 6 = 0$.

Answer p =_____ or ____ [3]

Anglo-Chinese School (Barker Kond)

A supplier sells watches at \$210 each.

Jimmy buys the watches from the supplier at a discount of 20%.

Jimmy intends to then sell the watches at a profit of 20%.

As a marketing strategy, Jimmy plans to offer a 10% discount on the marked price without affecting his intended 20% profit.

Calculate the marked price that Jimmy should sell each watch at.

		Answer \$	[3]
12		ets off at 08 50 to walk 1000 metres at an average speed of 4 km/h. kes a 5 minutes break and then runs 1.3 km in 5 minutes. He aims to complete the entire exercise by 09 30. Will he achieve his target? Show your working clearly.	
		Answer	[2]
	(b)	Calculate his average speed for the entire exercise. Give your answer in metres per minute.	

Answer

m/min [1]

13 (a)

Two bottles of Brand A coffee are geometrically similar. The larger bottle contains 200 g of coffee granules.

The larger bottle is approximately 49% taller than the smaller bottle. Find, in grams, the amount of coffee granules in the smaller bottle. Give your answer to the nearest gram.

Brand Y claims that its sales of 200 g bottles of coffee are better than that of Brand X in the past 5 years.

State one aspect of the charts that makes this claim wrong.

Answer	 				<u></u>	
						[1]
	 	· · ·		· · · · · · · · · · · · · · · · · · ·		 [_ 1

14	(a)	Express 1260 as a product of its prime factors.	
		Answer	[1]
	(b)	The highest common factor of two numbers is 12 while the lowest common multiple is 1260. Both numbers are less than 200. Find the two numbers.	
		Answer and	[2]
	(c)	$486 = 2 \times 3^5$	[2]
	()	m and n are both prime numbers.	
		Find the values of m and n so that $486 \times \frac{m}{n}$ is both a perfect square and a	
		perfect cube.	
	<u> </u>	Answer $m = \underline{}$ and $n = \underline{}$	[1]

Anglo Chinese School (Barker Road)

15 (a) Express $x^2 + \frac{1}{2}x + 1$ in the form $(x+a)^2 + b$.

Answer	[2]
AII S WEI	 L

(b) Sketch the graph of $y = x^2 + \frac{1}{2}x + 1$ on the axes below. Indicate clearly the coordinates of the point where the graph crosses the y-axis and the turning point on the curve.

Answer

[2]

The table below shows the number of cars and motorcycles passing through an Electronic 16 Road Pricing (ERP) gantry on certain days of the week from 7.30 am to 7.55 am.

	Cars	Motorcycles
Wednesday	320	120
Thursday	380	100
Friday	410	130
Charges per vehicle	\$2	\$0.50

Represent the number of vehicles passing through the ERP gantry in a 3×2 matrix V.

(b) Write down a matrix C such that the product P = VC represents the total charges incurred by all vehicles on each of the days.

Answer
$$C = [1]$$

Evaluate the matrix P = VC.

Answer
$$P =$$

(d) A is a matrix such that $A = \frac{1}{3}(1 \ 1 \ 1)P$.

State what A represents.

Answer______

Answer

[1]

17

The diagram shows a container in the shape of a prism with a triangular cross-section.

The container has a height of 40 cm.

Water is poured into the empty container at a constant rate.

It takes 12 minutes to fill the container completely.

After t minutes, the depth of the water is d cm.

(a) Find the value of t when d = 20.

Answer t = [2]

(b) On the grid, sketch the graph showing how the depth varies during the 12 minutes.

Answer

[2]

The diagram shows a semicircle with centre O and radius 8 cm. OP is perpendicular to PQ.

Angle PQO = 0.7 radians.

Find the area of the shaded region.

Answer		cm^2	[4]
--------	--	--------	-----

19 The diagram below shows the speed-time graph for a car travelling on the road.

(a) The total distance travelled by the car from 0 to 23 seconds is 385 metres. Calculate the value of v.

Answer
$$v =$$
 [2]

(b) When t = 45, the car is travelling at a speed of 25 m/s. When t = T, the car is travelling at a speed of 30 m/s. Find the value of T.

Answer
$$T =$$
 [2]

20 In the diagram, AB, QR and PC are parallel. PQB, CQA and CRB are straight lines. AB = 7 cm and QR = 3 cm.

(a) Show that triangle *PCB* and triangle *QRB* are similar. Give a reason for each statement.

Answer						
			_			
			_			
			_			
	· ····		[2]			
Write down another pair of similar	triangles.					
Answer	Triangles	and	[1]			

Answer _____ cm [2]

(b)

(c)

Calculate PC.

Anglo-Chinese School (Barker Road)

21	(a)	Simplify $\left(\frac{4a^6}{b^4}\right)^2$	$\frac{1}{2}$, giving your answer in positive index
----	-----	--	--

Answer	[2]

(b)
$$\frac{2^k}{\sqrt[4]{8}} = 4^{2k}$$
.

Use the laws of indices to find the value of k. Show your working.

Answer
$$k =$$
 [3]

22 The first three terms in a sequence of numbers are given below.

$$T_1 = 1 \times 2 + 10 = 12$$

$$T_2 = 2 \times 3 + 6 = 12$$

$$T_3 = 3 \times 4 + 2 = 14$$

$$T_4 = 4 \times 5 - 2 = 18$$

(a)	Show that the n^{th} term of the sequence, T_n , is given by $T_n = n^2 - 3n + 14$
	Answer

[2]

(b) Evaluate T_{50} .

Answer _____ [1]

(c) Explain why every term in the sequence is even.

Answer _____

[3]

[3]

23 In the diagram, ABCDE is a regular pentagon.

(a) Show that BE is parallel to CD.

Answer	 		 	
<u></u>	 			
			 	 ··
	 			

(b) The sides AB and DC are produced to meet at X. What type of quadrilateral is BECX? Explain your answer.

rswer		 	 	 _
	·	 	 	
_		 	 	
-				

- 24 A is the point (8, -2) and $\overrightarrow{AB} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$.
 - (a) Find (i) $|\overrightarrow{AB}|$,

Answer	[1]
	[. *]

(ii) the equation of the line AB.

Answer[2]	
---------	----	--

(b) The equation of the line CD is 2y-4x=19. Find the coordinates of the point of intersection of AB and CD.

Answer (_____, ____) [3]

Angla-Chinese School (War	ker Road)
---------------------------	-----------

25	There a Two of (a)	are 12 boys and 13 girls in a class. f the children are selected at random to participate in a forum. Draw a tree diagram below to show the probabilities of the possible outcomes.	
			[2]
	(b)	Find, as a fraction in its simplest form, the probability that (i) two boys are selected,	
		Answer	[1]
		(ii) one boy and one girl are selected.	
		,	(2 1)
		Answer	[2]

Angla-Chinese School (Backer Kand)

(c) As a standby, a third student is selected.

Find the probability that out of the three students, there will be at least one boy and one girl selected.

Answer	 [2

Anglo-Chinese School (Warker Road)

BLANK PAGE

Full Name	Class Index No	Class

Anglo-Chinese School (Parker Road)

PRELIMINARY EXAMINATION 2024 SECONDARY FOUR EXPRESS / FIVE NORMAL (ACADEMIC)

MATHEMATICS 4052 PAPER 2

2 HOURS 15 MINUTES

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks. The total of the marks for this paper is 90.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

	For Examiner's Use
L	

Anglo-Chinese School (Barker Road)

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone
$$=\frac{1}{3}\pi r^2 h$$

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area
$$=\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Write down an expression, in terms of x , for the USD received in exchange for SGD 10 000.	
Answer USD =	[1]
022, the rate was such that USD 1 would exchange for SGD 0.030 less than in 2023 difference in exchanging SGD 10 000 in 2023 and SGD 10 000 in 2022, is USD 10	3. 66.
Write down an equation to represent this information and show that it reduces to $83x^2 - 2.49x - 150 = 0$.	
Answer	
	[3]
Solve the equation $83x^2 - 2.49x - 150 = 0$, giving your solutions correct to three decimal places.	,
4	
	[3]
Give your answer correct to the nearest dollar.	
	SGD 10 000. Answer USD =

1

Anglo-Cl	riuese.	School	Back	er Roud)
"Annin ed	(IHEDE)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Section 14	or winner,

- 2 (a) It is given that $sq^2 = r 3q^2$.
 - (i) Evaluate s when q = -3 and r = 5.

Answer	<u>s</u> =	[]	1
217107707	1.7	L-	٠,

(ii) Express q in terms of r and s.

Answer
$$q =$$
 [2]

(b) (i) Show that $(7n-1)^2 - (n-1)^2$ is a multiple of 12 for all integer values of n.

Answer

[2]

Auglo-Chinese School (Barker Road)

(b) (ii) Simplify $\frac{p-3n+12n^2-4np}{(7n-1)^2-(n-1)^2}$.

Answer	 [3]	1
	L-	_

Anglo-Chinese School (Narker Road)

The diagram shows a circle ABCDEF, with centre O.

TA and TE are tangents to the circle.

BGF and COT are straight lines.

OA intersects BF at G. CT is parallel to BA.

(a) Identify the triangle that is congruent to triangle TOE and show that they are congruent.Give a reason for each statement you make.

Answer									
	~ <u></u>								
		<u> </u>	···		- J			7 1111	
	<u></u>					_	<u></u>		
							<u></u>		
			 -						
				<u> </u>			·-	<u></u>	

[3]

Augla-Chinese Si	haal (V arker	Koad	J
------------------	--------	----------------	------	---

(b)	Find, giving reasons for each step of your working, (i) angle OFG,	
	Answer angle OFG =	[3]
	(ii) angle CDE.	
	Answer angle $CDE = $	[3]
(c)	Explain why points O,E,T and A can also be points on the circumference of another circle.	
	Answer	
		[1]

Anglo-Chinese School (Barker Road)

4

The position vectors of A and B, relative to O, are a and 2b respectively.

$$\overrightarrow{BC} = \frac{3}{4}\overrightarrow{BA}$$
 and $\overrightarrow{AD} = \frac{1}{2}\overrightarrow{BO}$.

- (a) Find, in terms of a and b,
 - (i) \overrightarrow{AB} ,

Answer $AB = \mathbb{I}^1$

(ii) \overrightarrow{OC} .

Answer
$$\overrightarrow{OC} =$$
 [2]

(b) (i) P is a point outside of triangle ABO. Find \overrightarrow{OP} , such that $\overrightarrow{BP} = 3\overrightarrow{OA}$.

Answer $\overrightarrow{OP} =$ [1]

	(ii)	Show that O, C and P lie on a straight line.	
		Answer	[2]
(c)	Find (i)	the ratio area of triangle OCB: area of triangle OCA,	[2]
	(1)	anca of triangle OCD. area of triangle OCA,	
	(ii)	Answer : _	[1]
		Answer : :	[1]
		1115577-07	

A stone is thrown from the top of a cliff next to the sea.

The height, h metres, of the stone above the sea level t seconds after it is released can be modelled by the equation $h = 16t - 5t^2 + 80$.

Some corresponding values of t and h are given in the table below.

DOM			_				
t	0	1	2	3	4	5	6
h	80	91	92	83	64	35	p

(a) Calculate the value of p.

Answer
$$p =$$
 [1]

(b) On the grid, draw the graph of $h = 16t - 5t^2 + 80$ for $0 \le t \le 6$.

(c) Explain how the graph shows that the stone will not reach a height of 100m.

Answer	 <u> </u>	 	

___ [1]

	Anglo Chinese,	School	Marker	Road)
--	----------------	--------	--------	-------

(d)	Use the graph to find the length of time that the stone was 84 metres or more above sea level.	
	Answers [1]	
(e)	By drawing a tangent on the grid in part (b) , find the gradient of the curve at (4, 64). State the units of your answer.	
	Answer[3]	

A water dispenser is in the shape of a cylinder and a hemisphere both of radius 10 cm. The height of the dispenser is 90 cm.

Conical disposable cups of diameter 6 cm and height 5.3 cm are provided to drink the water from the dispenser.

(a) Water is filled to the brim of the dispenser. Show that the amount of water in the dispenser is $8666\frac{2}{3}\pi$ cm³. Answer

[2]

(b) Find the capacity of one conical cup.
Give your answer to the nearest cm³.

Anguar	cm ³	[2]
Answer	CHI	[4]

Angl	a-Chin	ese Sch	aal (M)	irker i	(auti)
	,		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(c)	Find the height of the water remaining in the dispenser after 250 cups of water have been dispensed.
	Answer cm [4]
(d)	The conical disposable cups are made of a thin material of negligible thickness.
, ,	Calculate the cost of 250 conical cups given that the cost of material is 0.003 cents/cm ² .
, ,	Calculate the cost of 250 conical cups given that the cost of material is
, ,	Calculate the cost of 250 conical cups given that the cost of material is 0.003 cents/cm ² .
	Calculate the cost of 250 conical cups given that the cost of material is 0.003 cents/cm ² .
	Calculate the cost of 250 conical cups given that the cost of material is 0.003 cents/cm ² .
	Calculate the cost of 250 conical cups given that the cost of material is 0.003 cents/cm ² .
	Calculate the cost of 250 conical cups given that the cost of material is 0.003 cents/cm ² .
	Calculate the cost of 250 conical cups given that the cost of material is 0.003 cents/cm ² .
	Calculate the cost of 250 conical cups given that the cost of material is 0.003 cents/cm ² .
	Calculate the cost of 250 conical cups given that the cost of material is 0.003 cents/cm ² .

7 The map shown has a scale of 1:7500. An area on the map is formed by a triangle PQR. PQ = 7 cm, QR = 5.5 cm and RP = 6 cm.

(a) Find the actual perimeter, in kilometres, of triangle PQR.

Answer		km	[2]
--------	--	----	-----

(b) P is due north of Q.Calculate the bearing of Q from R.

[4]	i
	[4]

Anglo-Chinese School (Nurker Roud)

m ²	[3]
	[4]

Anglo-Chinese School (Barker Koad)

The marks attained by 40 students in a Mathematics test were recorded. The cumulative frequency curve shows the distribution of the marks.

- (a) Use the curve to estimate the
 - (i) the median mark,

Answer	[1]
11110 17 01	 L-1

(ii) the interquartile range.

Answer	[2]
AINSIVEI	 r_1

(b) 12.5% of students achieved more than x marks in this test. Estimate the value of x.

Answer
$$x =$$
 [1]

(c) Complete the frequency distribution table of the marks attained by the students.

Marks (x)	$4 \le x < 10$	$10 \le x < 15$	$15 \le x < 20$	$20 \le x < 24$
Number of				
students				

[2]

Calculate an estimate for

(i) the mean mark,

Answer	[1]
Answer	111

(ii) the standard deviation of their marks.

The same group of students sat for a Chemistry test.

The maximum mark for the test was also 25.

The box-and-whisker plot of the distribution of the marks is shown below.

(d) The scores of the top 25% of the students for the Chemistry test were less consistent than the scores of the bottom 25%.Given that a is an integer, write down the value of a.

Answer
$$a =$$
 [1]

(e) Make two comparisons between the performances of the students in the Mathematics test and the Chemistry test.
Use figures to support your answer.

1.	 		

[2]

- Lee started work on 1 January 2019.He started with a monthly salary of \$4100 and has seen his salary increase by 4% annually.
 - (a) Show that Lee's current monthly salary, in January 2024, is \$5000, correct to the nearest thousand.

Answer

[1]

Lee has savings of \$105 000.

With his savings and monthly income, he intends to buy a car, in January 2024. He is deciding between buying an EV 60kWh electric car or a 1998cc petrol car.

The table below is used to calculate the cost price of the car:

	Car Type	EV 60kWh electric car	1998cc petrol car
	Base cost (without COE)	\$100,000	\$110,000
b.	COE	Refer to Table	A (COE Prices)
c.	Rebates (clean energy initiatives)	\$30,000	Not applicable

Every car owner in Singapore must purchase a Certificate of Entitlement (COE) for the car, which gives him the right to own and use a vehicle in Singapore. The COE prices since January 2023 can be seen below.

Table A: COE Prices

Category E
Category B

\$160,000 \$150,000 \$140,000

\$130,000

Anglo-Chinese School (Barker Koad)

Lee will take a loan from a financial institution. He intends to take the largest loan possible. The loan amount can be calculated using the information in Table B below:

Table B: Calculation of Loan

Car Type	EV 60kWh	1998cc petrol car
Maximum loan amount	60% of cost price of car	70% of cost price of car
Maximum loan period	7 years	7 years
Interest rate	2.78% yearly	2.78% yearly
(based on simple interest)		,

Being prudent, he would like to maintain an amount equivalent to at least 6 months of his salary in his savings.

(b) Show that Lee can only make the downpayment for **one** of the two cars. Show your calculations clearly and justify any decisions you make.

Answer

The approximate expenses for each car are seen in Table C below.

Table C: Maintenance Cost

	Car Type	EV 60kWh	1998cc petrol car
a.	Road Tax	Refer to Table D below	
b.	Repayment of loan	to be calculated	
	Other costs (Annual)	\$4700	\$3000
,	Other costs (Monthly)	\$600	\$800
To	$tal\ expenses = a + b + c + d$		

Table D: Road Tax (for 6 months)

T	he table calculates the	road tax for 6 months
For Petrol Car	1000 < EC ≤ 1600	[\$250 + \$0.375(EC - 1000)] x 0.782
Engine Capacity (EC) in cc	1600 < EC ≤ 3000	[\$475 + \$0.75(EC - 1600)] x 0.782
For Electric Car	$30 < PR \le 230$	[\$250 + \$3.75(PR - 30)] x 0.782
Power Rating (PR) in kWh	PR > 230	[\$1,525 + \$10(PR - 230)] x 0.782

(c) Lee's monthly expenditure is around \$2700 on average.
 Based on the information given, determine if Lee can afford the car identified in part (b).
 Show your calculations clearly and justify any decisions you make.

Anglo-Chinese School (Narker Road)

Answer	Lee _	afford the car.	[7]
	_		r. 1

Anglo-Chinese School (Backer Road)

BLANK PAGE

Qn	1	Steps/Answer	Remarks
1	1	Sicha trasmer	Remarks
		$\sqrt{0.81}$ 0.902 $0.86^{\frac{2}{3}}$ $\frac{399}{441}$	
2		$= \frac{7x}{(x-5)^2} - \frac{1}{x-5}$	Also accept $\frac{7x}{(5-x)^2} + \frac{1}{5-x}$
	ļ		Also accept (3-x) 3-x
		$= \frac{7x - (x - 5)}{(x - 5)^2}$	$=\frac{7x+5-x}{(5-x)^2}$
	 	6x+5	6x+5
		$=\frac{6x+5}{(x-5)^2}$	$=\frac{6x+5}{(5-x)^2}$
	<u> </u>	(x-3)	(3-x)
3		$(254.9\times10^9)\div(2.45\times10^6)$	Accept (254×10 ⁹)÷(2.45×10 ⁶) or higher accuracy
		$= 1.04 \times 10^5$	
4		50 2002	
		$\frac{5c}{2} \div \frac{20c^2}{d}$	
		$= \frac{5c}{2} \times \frac{d}{20c^2}$ $= \frac{d}{8c}$	
	<u> </u>	<u> </u>	
		$=\frac{1}{8c}$	
5		$\frac{9kx^2 - kx^2}{kx^2} \times 100\%$	
··········		= 800%	
6		(3-2) units -> \$20	The state of the s
		Total 9 units -> \$180	
7	(a)	$-8 \le 2 - 3x$ and $2 - 3x < 7 - \frac{1}{2}x$	
-,		$-10 \le -3x \qquad \text{and} \qquad -5 < 2\frac{1}{2}x$	
		$-2 < x \le 3\frac{1}{3}$	cannot accept 3.33
	(b)	-1, 0, 1, 2, 3	
8	(a)	arepsilon	
	(bi)	7 ∉ B	
1.00	(bii)	${3,7}_{\subseteq A}$	
		<u></u>	<u> </u>

9		√	
		(b) D	
		A	
		+ 1	Construction arcs are to be clearly seen.
		B Scanned with Cambidans or	
		Correct angle bisector	
		Correct perpendicular bisector]
		Correct region shaded	
10		(2p+1)(p-2)=0	Accept $(2p+1)(3p-6)=0$
		(2p+1)(p-2) = 0 $p = -\frac{1}{2}, p = 2$	
		2	
-		Cost price of watch for Jimmy = $\frac{80}{100} \times 210$	
11			
ļ		= \$168	
		Profit price = $\frac{120}{100} \times 168	
		=\$201.60	
		Marked price = $\frac{100}{20} \times $201.60 = 224	
		90	
		Total time taken	
12	(a)	$= 15+5+5=25 \min$	
 		Yes, he will achieve his target as he will complete by 09 15.	
	(b)	2.3×1000	
		25	
		= 92 m/min	
13	(a)	200 149 .	
	(4)	$\frac{200}{V} = (\frac{1.49}{1})^3$	
*******		V = 60g	
	(b)	Different vertical scales/intervals are used.	
		22 27 5 5	
14	+		
	(b)		
	(c)	m=3, n=2	

		17 to 18 to	
15	(a)	1	
13	(4)	$x^{2} + \frac{1}{2}x + 1$ $= \left(x + \frac{1}{4}\right)^{2} + \frac{15}{16}$	
		(1)2 15	
		$=\left(x+\frac{1}{4}\right)+\frac{15}{16}$	
		(4) 16	
		1 (0.1)	
	(b)	$ \frac{\left(-\frac{1}{4}, \frac{15}{16}\right)}{0} \Rightarrow x $	
16	(a)	(320 120)	
		$\mathbf{V} = \begin{vmatrix} 380 & 100 \end{vmatrix}$	
		(410 130)	
	(h)		
	(b)	$\mathbf{C} = \begin{pmatrix} 2 \\ 0.5 \end{pmatrix}$	
		(0.5)	
	(c)	(700)	
		$\mathbf{P} = 810 $	
		(885)	
	(4)		
	(d)	A represents the average ERP charges collected across the three days.	
		uno cays.	
17	(a)	1/	
- '		$\frac{\frac{1}{2} \times base \times 20 \times width}{\frac{1}{2} \times (2 \times base) \times 40 \times width} \times 12$	$\int_{\text{or}} \left(\frac{20}{40}\right)^2 \times 12$
		$\frac{1}{2} \times (2 \times base) \times 40 \times width$	or (40)
		= 3 min	
	(b)	Depth (d cm) 20 10 3 6 9 12 Time (t minutes)	
		inte frances	
	<u>i</u>		

18		$QP = \frac{8}{\tan 0.7 rad} = 9.4979$	
		Area of triangle $OPQ = \frac{1}{2}(8)(9.4979) = 37.992$	
		Area of sector = $\frac{1}{2} (8^2) \left(\frac{\pi}{2} - 0.7 \right) = 27.865$	
		Area of shaded region = 10.1 cm ²	
19	(a)	$\frac{1}{2}(6)v + (18-6)v + \frac{1}{2}(23-18)v = 385$	
		v = 22 m/s	
	(b)	$\frac{30-0}{T-35} = \frac{25-0}{45-35}$ $30(10) = 25(T-35)$	$\frac{10}{\text{or }} = 2$
		T = 47s	or 45+2=47
20	(a)	angle PBC = angle QBR (common angle) angle BQR = angle BPC (corr. angles, $PC//QR$)	
		Triangle PCB and triangle QRB are similar (AA test)	
	(b)	Triangles ABC and QRC or Triangles ABQ and CPQ	
	(c)	$\frac{CR}{CB} = \frac{3}{7}$	
		$\frac{QR}{PC} = \frac{BR}{BC}$	
		$\frac{3}{PC} = \frac{4}{7}$	
		PC = 5.25	

	1		,
21	(a)	$\left \left(\frac{4a^6}{b^4} \right)^{\frac{1}{2}} \right $	
		$= \left(\frac{b^4}{4a^6}\right)^{\frac{1}{2}}$	
		$=\frac{b^2}{2a^3}$	
	(b)	$\frac{2^k}{\sqrt[4]{8}} = 4^{2k}$	
		$\frac{2^k}{\sqrt[4]{8}} = 4^{2k}$ $\frac{2^k}{2^{\frac{3}{4}}} = 2^{4k}$	
		$k = 4k + \frac{3}{4}$ $k = -\frac{1}{4}$	
		$k = -\frac{1}{4}$	
22	(a)	$T_n = n(n+1) + 10 - 4(n-1)$	
		1 "	
		$= n^2 + n + 10 - 4n + 4$	
	(b)	$= n^2 - 3n + 14$	
	(b)	$T_{50} = 2364$	
	(c)	$n^2 - 3n + 14 = n(n-3) + 14$	
		When n is even $n(n-3)$ is (even x odd) = even.	
		When n is odd, $n(n-3)$ is (odd x even) = even.	
		Adding to 14 which is also even,	
		$T_n = n^2 - 3n + 14$ will always be even for all terms.	**-
23	(a)	$\angle EDC = \angle BAE = \frac{(5-2)\times180}{5} = 108^{\circ}$	
		$\angle AEB = \frac{180 - 108}{2} = 36^{\circ}$	
		$\angle BED = 108 - 36 = 72^{\circ}$	
		$\angle BED + \angle EDC = 72 + 108 = 180^{\circ}$	
		By the converse of interior angles, BE is parallel to CD	
	(b)	$\angle EBX = 180 - 36 = 144^{\circ}$	
	(2)		_[
		$\angle BEC = 108 - 36 - 36 = 36^{\circ}$	Or equivalent methods, with
		As $\angle EBX + \angle BEC = 180^{\circ}$, by the converse/property of interior angles, $EC//BX$.	correct reasoning. (eg BE//CX and a pair of opposite equal angles)
		BECX is a rhombus as $BE//CX$ (or DX) and $EC//BX$ and adjacent sides $BE=EC$.	opposite equal angles)

24	(ai)	5	
	(aii)	Gradient of PQ = $\frac{-3}{4}$	
		$-2 = \frac{-3}{4}(8) + c$	
		c=4	
		Equation is $y = \frac{-3}{4}x + 4$	
	(b)	$2\left(\frac{-3}{4}x+4\right)-4x=19$	Or elimination method correctly follow-thru from a(ii)
		x = -2, y = 5.5	
	ļ	(-2,5.5)	
25	(a)	2 nd child 11 Boy	
		$1^{\text{st}} \text{ child}$ Boy	
		Boy	
ļ		$\frac{12}{25}$ $\frac{13}{24}$ Girl	
		24 0	
		$\frac{12}{24}$ Boy	
		$\frac{13}{25}$	
		Girl	
		$\frac{12}{24}$ Girl	
	(b)	$\left(\frac{12}{25}\right)\left(\frac{11}{24}\right) = \left(\frac{11}{50}\right)$	
	(c)	$\left(\frac{13}{25}\right)\left(\frac{12}{24}\right) \times 2$	
		$=\left(\frac{13}{25}\right)$	
		$1 - \left(\frac{12}{25}\right)\left(\frac{11}{24}\right)\left(\frac{10}{23}\right) - \left(\frac{13}{25}\right)\left(\frac{12}{24}\right)\left(\frac{11}{23}\right)$	
	(d)	or P(BBG)+P(BGB)+P(GBB)+P(GGB)+P(BGG)	
		$= \left(\frac{12}{25}\right) \left(\frac{11}{24}\right) \left(\frac{13}{23}\right) \times 3 + \left(\frac{13}{25}\right) \left(\frac{12}{24}\right) \left(\frac{12}{23}\right) \times 3$	
		$= 0.78 \text{ or } \left(\frac{39}{50}\right)$	

Qn		Steps/Answer	Remarks
1	(a)	$USD = \frac{10000}{\pi}$	
	 	10000 10000	
	(b)	$\frac{10000}{x - 0.030} - \frac{10000}{x} = 166$	
		10000x - 10000(x - 0.030) = 166x(x - 0.030)	
		$166x^2 - 4.98x - 300 = 0$	
		$83x^2 - 2.49x - 150 = 0$	
	(0)	$2.49 \pm \sqrt{(-2.49)^2 - 4(83)(-150)}$	
L	(c)	$x = \frac{2.49 \pm \sqrt{(-2.49)^2 - 4(83)(-150)}}{2(83)}$	
		x = 1.359 or x = -1.329	
	(d)	20000	
ļ	(4)	1.359 - 0.030	
		= USD 15 049	Accept 15 048
2	(ai)	$s = [5 - 3(-3)^2] \div (-3)^2$	
		$s = -2\frac{4}{9}$ or $s = -\frac{22}{9}$	Cannot accept 3 sf
	(aii)	$s = -2\frac{4}{9}$ or $s = -\frac{22}{9}$ $sq^2 = r - 3q^2$	
		$sq^2 + 3q^2 = r$	
		$q^2(s+3)=r$	
		r	
		$q = \pm \sqrt{\frac{r}{(s+3)}}$	
·	(b)(i)	$(7n-1)^2 - (n-1)^2$	
		= [(7n-1)+(n-1)][(7n-1)-(n-1)]	
		=6n(8n-2)	
		=12n(4n-1)	$= 12(4n^2 - n)$ is also accepted
ļ			
	(b)(ii)	$\frac{p-3n+12n^2-4np}{2n^2}$	
		$\frac{(7n+1)^2 - (n-1)^2}{n(1-4n)^2 - 2n(1-4n)}$	
		$=\frac{p(1-4n)-3n(1-4n)}{12n(4-4n)}$	***
		$\frac{12n(4n-1)}{(3n-n)(4n-1)}$	
		$=\frac{(3h^2p)(3h^2-1)}{12n(4n-1)}$	
		$\frac{12n(4n-1)}{3n-n}$	
		$ \frac{(7n+1)^2 - (n-1)^2}{p(1-4n) - 3n(1-4n)} = \frac{p(1-4n) - 3n(1-4n)}{12n(4n-1)} = \frac{(3n-p)(4n-1)}{12n(4n-1)} = \frac{3n-p}{12n} $	

			<u></u>

		One possible answer			
		• $ET = AT$ (tangents from external points are equal)			
		• TO is common			
3	(a)	• $OE = OA$ (radii of circle)			
		Triangle TOA is congruent to triangle TOE (SSS test)			
		Another possible answer			
		• angle TAO = angle TEO = 90° (tangent perpendicular to radius)			
		• TO is common			
		• $OE = OA$ (radii of circle)			
		Triangle TOA is congruent to triangle TOE (RHS test)			
	(bi)	angle $AOT = (180 - 90 - 32)^{\circ} = 58^{\circ}$			
<u></u>		(tangent perpendicular to radius)			
		angle $ABF = \frac{1}{2}$ angle $AOT \frac{1}{2}(58^\circ) = 29^\circ$			
		(angle at centre is twice angle at circumference)			
		angle OFG = angle ABF = 29°			
		(alternate angles, OF //BA)			
	(bii)	angle ACF = angle ABF =29°			
		(angles in the same segment)	<u> </u>		
		angle $CAE = 180 - 90 - 29 = 61^{\circ}$ (OT is perpendicular bisector of chord AE)			
	-	angle $CDE = 180 - 61 = 119^{\circ}$			
		(angles in opposite segments)			
	(c)	As angle OET and angle OAT are right-angles, by the property of right			
		angle in a semicircle, OT is a diameter and points E and A will lie on			
		the circumference. OETA are thus four points on the circumference of this circle.	***		
}		Or			
		Angle AOE + angle ATE = (58×2) + (32×2) = 180°			
		Angle OET + angle OAT = 180°.			
		By the property of angles in opposite segments, OETA are thus four			
	+	points on the circumference of this circle.			
	 -				
4	(a)(i)	$\overrightarrow{AP} = 2h - a$			
-	(4)(1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	(a)(ii)	$\overrightarrow{AB} = 2b - a$ $\overrightarrow{BC} = -\frac{3}{4}\overrightarrow{BA} = -\frac{3}{4}(2b - a)$ $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} = 2b - \frac{3}{4}(2b - a) = \frac{3}{4}a + \frac{1}{2}b$			
		$ \overrightarrow{OC} - \overrightarrow{OR} + \overrightarrow{RC} = 2h - \frac{3}{2}(2h - a) = \frac{3}{2}a + \frac{1}{2}b$			
	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	(1)(0)	$\begin{array}{c} OP = OB + BP = 2D + 3U \\ \longrightarrow & 1 \end{array}$			
	(b)(ii)				
		$As \ \overrightarrow{OC} = \frac{1}{4} \overrightarrow{OP},$			
	 	and O is a common point, O, C and P lie on a straight line.			
L					

3:1 (ci) (cii) OAC: OAB: OAD 1 : 4 2 : 1 4 : 2 Therefore, OAC: OAD is 1:2. 5 (a) p = -4(b) $h = 80 + 16t - 5t^2$ The maximum point of the curve is 93m. (c) ± 1 m 2.9 - 0.3 = 2.6(d) ±0.2s Tangent drawn correctly (e) -24 (±4) m/s

	(BEERFE)			
6	(a)	volume of water = $\pi(10^2)(80)$ + $(\frac{2}{3})(\pi)(10^3)$		
		$=8666\frac{2}{3}\pi$		
				
	(b)	Capacity of one conical cup = $(\frac{1}{3})(\pi)(3^2)(5.3)$		
	1	$= 50 \text{ cm}^3$		
	- 		<u>Alternative</u>	
	(c)	Volume of water remaining after dispensing 250 cups = $8666 \frac{2}{3}\pi - (250 \times \frac{1}{3}\pi(3^2)(5.3)$	Volume of water dispensed for 250 cups $= 250 \times 15.9\pi$	
	_			
		$=4691\frac{2}{3}\pi \text{ or } 14739 \text{ cm}^2.$	TT : 14 C - 4 1: 1 6 250	
		Volume of water in cylinder = $4691\frac{2}{3}\pi - \frac{2}{3}\pi(10^3)$	Height of water dispensed for 250 cups $= \frac{250 \times 15.9\pi}{100\pi}$	
	- -	$= 4025\pi$ or 12645 cm ² .		
		Height of water in cylindrical section $= \frac{4025\pi}{\pi(10^2)} \text{ or } \frac{12645}{\pi(10^2)}$	Height of water remaining in dispenser $= 90 - \frac{125}{\pi}$	
	- 	= 40.25 or 40.250		
		Height of water remaining in dispenser = 40.25+10 or 40.250+10		
		= 50.25 cm or 50.3 cm	= 50.2 (3sf)	
	(d)	Slant height of cup = $\sqrt{3^2 + 5.3^2}$ = 6.0902		
		Curved surface area of cup = $\pi(3)(6.0902)$ = 57.399 cm ²		
		250 cups will cost 57.399 × 250 × 0.003		
		= 43 cents		Accept 44 cents
				<u> </u>

7	(a)	$18.5 \times 7500 \div 100000$	M1	
		1.3875 km	A 1	c.a.o.
	<u> </u>			
	(b)	$6^2 = 7^2 + 5.5^2 - 2(7)(5.5)\cos \angle PQR$	M1	
		$\cos \angle PQR = \frac{-43.25}{-77}$	M1	Or equivalent method leading to the correct bearing
		angle PQR = 55.827°	M1	
	 	Bearing of Q from R is $(180+55.827) = 235.8^{\circ}$	A1	
	(c)	Area of $QPR = \frac{1}{2}(7 \times 75)(5.5 \times 75) \sin 55.827^{\circ}$	√M2	
	ļ	$= 89 585 \text{ m}^2$		
	-	= 89 600 m ²	A1	
	(d)	Let shortest distance from R to PQ be X.		
		$sin \angle PQR = \frac{RX}{QR}$ $sin 55.827^{\circ} = \frac{RX}{412.5}$		
		$sin 5 5.827^{\circ} = \frac{RX}{412.5}$	M1	Or equivalent method
		RX = 341.28m	M1	
		Let greatest angle of elevation be y.		
		$tan y = \frac{75}{their RX}$	M1	
		y=12.4°	A1	

	(Marker Ad	ac)						
8	(ai)	15 marks						
	(aii)	18 – 12						
		6 marks					ys. All	
	(b)	20.5 marks						
	 	•						
		Marks (x)	4 ≤ <i>x</i>	10 ≤ <i>x</i>	15 ≤ <i>x</i>	20 ≤ <i>x</i>		
	(6)		< 10	< 15	< 20	< 24		
	(c)	Number of students	6	14	14	6		
	(ci)	(6×7)+(14×12.5)+(6×22)	=14.85			
	+	4.62	40					
ļ	(cii)	4.02				,		
		Alternative a						
					n i		THE PARTY OF THE P	
		Marks (x)	4 ≤ x	10 ≤ x				
	(c)		< 10	< 15	< 20	< 24		
	174	Number of students	7	13	14	6		
		(6×7)+(14×12.5)+/14×17.5)+(6×22)			andala andrew Angli (18 china) andrewa	
	(ci)		40		=14,7125			
	(cii)	4,76						
	(d)	15						
	(e)	The students marks) was b	performe	d better in	n Mathem	atics as th	e median score (15	
		marks) was n	ngner mai	n Chenns	uy a (171	Hui Ko)		
		The students	nerforme	d more co	nsistently	v in Chem	istry as the interquart	ile
		range (3 mar	ks) is low	er than M	athematic	cs (6 mark	s)	
		range (3 marks) is lower than Mathematics (6 marks)						

9	(a)	$$4100\left(1+\frac{4}{100}\right)^{5}=4988		
		= \$5000		
	(b)	Justification: Choose the highest COE price recorded in the past 12 months to cover the worst-case scenario		
			EV 60kWh	
		Cost price of car	\$(100,000+105,000 - 30,000 =\$175,000	
		Minimum downpayment	40% × \$175,000 = \$70,000	
			1998cc petrol car	
		Cost price of car	\$(110,000+150,000) = \$260,000	
		Minimum downpayment	30% × \$260,000 = \$78,000	
		6 months of Lee's salary	$= 6 \times \$5000 = \$30,000$	
		Savings – downpayment	$\frac{\text{EV } 60\text{kWh:}}{\$(105,000 - 70,000)} = \$35,000$ $\frac{1998\text{cc petrol car:}}{\$(105,000 - 78,000)} = \$27,000$	
		conclusion	Lee can only afford the downpayment for the EV $60kWh$. $(\$35,000 - \$30,000 = \$5000)$	
+	(c)	To determine is Lee can afford the car in Jan 2024.		
		i) <u>Road Tax</u>	$[250 + 3.75(60 - 30)] \times 0.7826 \div 6$ = \$47.246	
		ii) Loan amount	175000 - 70000 = \$105,000	
		Interest	$\frac{105,000\times2.78\times7}{100}$ \$20,433	
		(iii) Monthly Instalment	(105,000 + 20,433) ÷ 84 =\$1493.25	
		iv) Other costs (monthly basis)	$\frac{4700}{12} + 600 = \991.667	
T		Total monthly expense	\$2532.1625	
		Spare cash for the month	5000 - 2700 = \$2300	
		v) Affordability Spare cash – total monthly expenses	2300 - 2532.1625 = - \$232.1625 Lee <u>would not be</u> able to afford the car.	
			However, if we take into consideration that Lee still has \$5,000 remaining after making the downpayment in part (b) with \$30,000 already set aside, he would be able to afford the car	