

ANDERSON SECONDARY SCHOOL Preliminary Examination 2024 Secondary Four Express and Five Normal

CANDIDATE NAM	E:	
CLASS:	/	INDEX NUMBER:
MATHEMATIC	:S	4052/01
Paper 1		14 Aug 2024
·		2 hours 15 min
		0800 – 1015 h
	r on the Question Paper.	
No Additional Mate	rials are required.	

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use paper clips, highlighters, glue or correction fluid/tape.

Answer all the questions.

If working is needed for any question it must be **neatly and clearly** shown in the space below the question.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 90.

Mathematical Formulae

Compound Interest

Total amount =
$$P \overline{1} + \frac{r}{100} \sqrt[4]{r}$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere =
$$4\pi r^2$$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\Sigma fx}{\Sigma f}$$

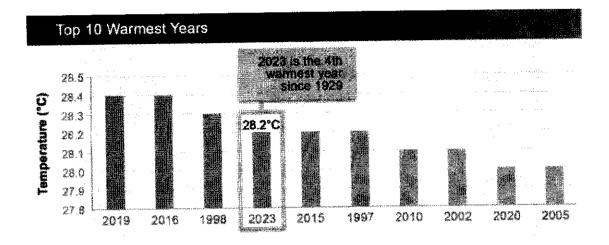
Standard deviation =
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$$

1	Expand	and	simplify	a(5a-	-2h\	$(5a \pm 2b)$	١
1	Dybana	anu	эшіршу	$u_1 > u -$	- 20 Ji	(3a + 4b)	j.

Answer [2]

2 Given that $3^x + 3^{x+2} = 90$, find x.

Answer $x = \dots$ [2]


4

3 Simplify
$$\frac{2x^2 + 4xy - 3x - 6y}{2x^2 + xy - 6y^2}$$
.

Answer	 [3]
1113 WEI	 ر ح

		5		
4	Two	o integers, A and B , can be written as produ	cts of prime factors.	
			$B = q \times 3^m \times 7$	
	The	lowest common multiple (LCM) of \boldsymbol{A} and	B is $3^3 \times 5 \times 7$.	
	(a)	Write down the value of m and q .		
			Answer m =	[1]
			q =	[1]
	(b)	Find the highest common factor of A and	В.	
			Answer	[1]

5 Below is a graph from the Annual Climate Singapore 2023, which shows the top 10 warmest years in Singapore since 1929.

	e aspe retati		_	that	may	be	mis	leadir	ng an	d e	xplan	1 hov	this (may	lead	to	а
 			 	 ••••			••••		•••••	••••					••••		•
 			 ••••	 • • • • •													••
 			 	 				•••••	• • • • • •		•••••			•••••	• • • • • •		
 		· • • • •	 	 • • • •						• • • • •				• • • • • •		[2	[,

6	(a)	Simplify	$\left(\frac{y^9}{27x^{-6}}\right)$	$\frac{2}{3}$, leaving your answer in positive index
---	-----	----------	-------------------------------------	---

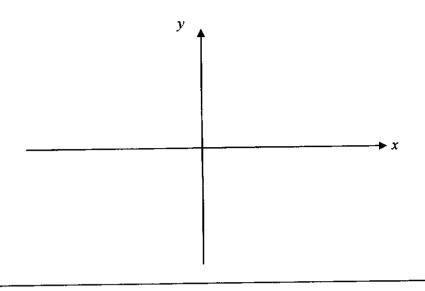
Answer [2]

(b) Given $\frac{25}{125^{2-x}} = 5^y$, express x in terms of y.

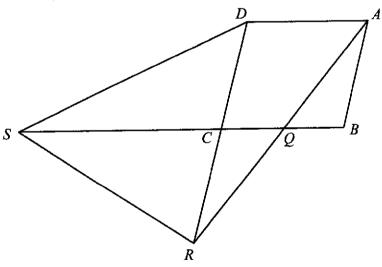
Answer [2]

7 (a) Factorise $9x^2 + 24xy + 16y^2$ completely.

Answer [1]

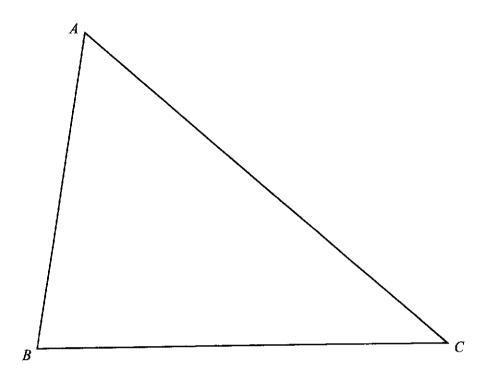

(b) Hence factorise $144a^8 - (9a^8 + 24a^4y + 16y^2)$ completely.

Answer[2]


8	dist	The intensity of a sound detected by a receiver is inversely proportional to the square of the distance of the receiver from the source of the sound.								
	Wh	en the distance is r metres, the intensity of the sound detected is q decibels.								
	Wh	en the distance is reduced by 40%,								
	(a)	find the intensity of the sound detected, in terms of q .								
		Answer decibels [2]								
	(b)	calculate the percentage difference in the intensity of the sound detected.								
		Answer % [1]								

[1]

Sketch the graph of $y = 3^{-x}$ on the axes below. Indicate clearly the coordinates of the points where the graph crosses the axes.


10 ABCD is a rhombus and RD = CS. SCB, DCR and AQR are straight lines.

Prove that triangles SCD and RDA are congruent.

11					$(x-h)^2 + k$, where h and k are constants, when graph of $y = x^2 - 10x - 2$.	rite dowr
					Answer (,) [2]
12	P=	$=$ $\{(x,$	y): x and y y): $x^2 + y^2 < y$): $xy < 0$	are integers, $-2 \le x < 2$	$< 1 \text{ and } -1 \le y \le 1$	
	(a)	Fine	d the numbe	er of elements in the u	niversal set ξ.	
	(b)	T ist	the element	ts of the following in	Answer $n(\xi) = \dots$	[1]
	(D)	(i)		is of the lonowing in	set notation.	
		(ii)	Q	Answer $P = \{ \dots \}$	•••••••••••••••••••••••••••••••••••••••	} [1]
				Answer $Q = \{ \dots \}$		} [1]

13 The diagram below shows a triangle ABC.

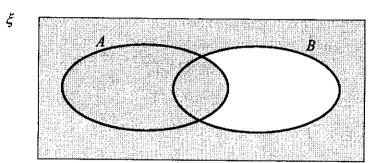
(a) Construct the perpendicular bisector of AC.

[1]

(b) Construct the bisector of angle BCA.

[1]

14 $W = \{0, \{0\}\}.$

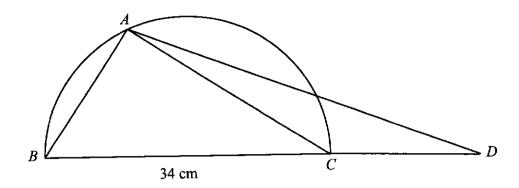

(a)	Find	n	(W)	١.
\ <i>\</i>		1		

Answer
$$n(W) = \dots [1]$$

(b) List all possible subsets of W.

1	ī	
]	l	17

(c) Write down the set represented by the following shaded region.

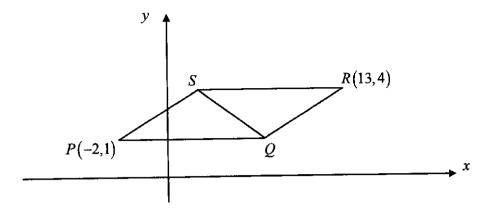


Answer	***************************************	[1]

15 Solve the inequality $x-3 \le \frac{5-x}{3} < \frac{x+1}{2}$.

Answer[3]

The diagram shows a semi-circle BAC, with diameter BC = 34 cm. AD and BCD are straight lines.



Given that $\cos \angle ABC = \frac{8}{17}$, without solving for angle ABC and angle ACD, find the exact value of $\cos \angle ACD$.

Answer	*******************************	[4]
Answer	********	L

17	The	sequence T_1 , T_2 , T_3 , T_4 , has the following first four terms.
		$T_1 = 2^2 - 1 = 3$
		$T_2 = 3^2 - 2 = 7$
		$T_3 = 4^2 - 3 = 13$
		$T_4 = 5^2 - 4 = 21$
	(a)	Find the 7th term of the sequence, T_7 .
		Answer $T_7 = \dots [1]$
	(b)	Write the expression for the <i>n</i> th term of the sequence.
		Answer $T_n = \dots [1]$
	(c)	Kelvin claims that the difference between 2 consecutive terms $T_{n+1} - T_n$, where n is a positive integer, will always be even. Do you agree? Explain your answer with clear workings.
		workings.
		[3]

18 The diagram shows two congruent isosceles triangles, *PQS* and *RSQ*. *PQ* and *RS* are parallel to the x-axis.

(a) Write down the coordinates of the point Q.

,	,	\ F1	1
Answer	(.,) [1	J

(b) Find the equation of the line PR.

(c) W is a point on the x-axis such that RW is perpendicular to RS. Write down the coordinates of the point W.

	(d)	Find the perin	noted of 1 Qub.						
	<u>-</u>				Answer			units	3
 19	daily	was 20.3 thous	vas recorded that and tonnes. Ass serated in the ye	uming that	ge amour	at of waste	generated in a year, f	in Singapore	
— 19	daily	was 20.3 thous	and tonnes. Ass	uming that	ge amour	at of waste	generated in a year, f	in Singapore	
19	daily	was 20.3 thous	and tonnes. Ass	uming that	ge amour	at of waste	generated in a year, f	in Singapore	
19	daily	was 20.3 thous	and tonnes. Ass	uming that	ge amour	at of waste	generated in a year, f	in Singapore	
19	daily	was 20.3 thous	and tonnes. Ass	uming that	ge amour	at of waste	generated in a year, f	in Singapore	
19	daily	was 20.3 thous	and tonnes. Ass	uming that	ge amour	at of waste	generated in a year, f	in Singapore	
19	daily	was 20.3 thous	and tonnes. Ass	uming that	ge amour	at of waste	generated in a year, f	in Singapore	
19	daily	was 20.3 thous	and tonnes. Ass	uming that	ge amour	at of waste	generated in a year, f	in Singapore	

A company sells chocolate muffins and banana muffins. These muffins are sold across three different outlets, which are Outlet A, Outlet B and Outlet C. The table shows the number of boxes of chocolate muffins and banana muffins produced at each of the three outlets in a particular day.

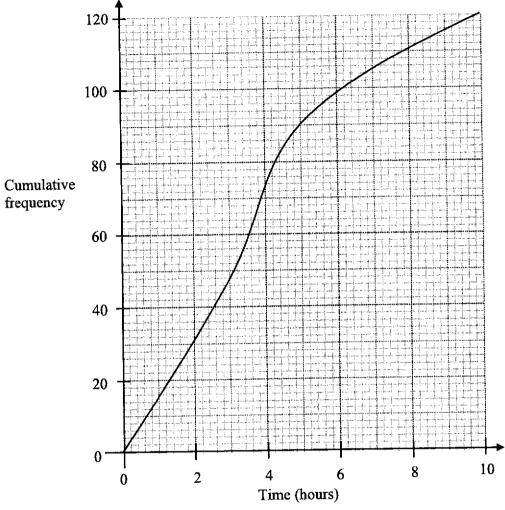
	Chocolate Muffin	Banana Muffii
Outlet A	36	40
Outlet B	48	39
Outlet C	45	x

The table can be represented by matrix **Q**, where **Q** = $\begin{pmatrix} 36 & 40 \\ 48 & 39 \\ 45 & x \end{pmatrix}.$

(a) (i) The production cost for each box of chocolate muffin and each box of banana muffin is \$3 and \$4.50 respectively. Represent this information in a 2×1 matrix, P.

Answer
$$\mathbf{P} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$
 [1]

(ii) Evaluate the matrix $\mathbf{R} = \mathbf{Q}\mathbf{P}$.

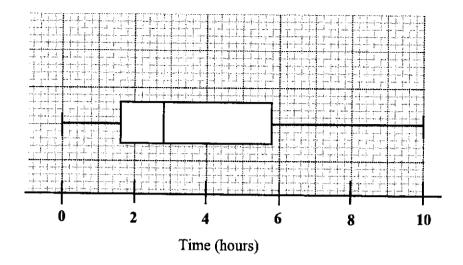

Answer
$$\mathbf{R} = \begin{bmatrix} \\ \end{bmatrix}$$

(b)	State what each of the elements in matrix R represents.
	[1]
	company sells each box of muffins for 70% more than it costs to produce.
On	that day, the company sold $\frac{5}{6}$ of each flavour of muffins in Outlet A, $\frac{4}{5}$ of each flavour of
	Thins in Outlet B , and all the muffins in Outlet C .
(c)	By using the matrix \mathbf{R} , find the total amount collected from the sale of muffins from all three outlets.
	Answer \$ [3]
(d)	The total amount collected from the sales of muffins from all three outlets is $$1454.52$. Calculate the value of x .
	Answer $x = \dots [1]$

21	stude	lass of 36 students, each student is either in a sports team or a performing arts club. Each at is also either a member or is a leader in their respective co-curricular activities. tudent is selected at random from the class. The probability that the student selected is in
		rts team is $\frac{1}{3}$.
		Given that there are 4 sports team members in the class, find the number of students who are leaders in a sports team.
		Answer [1]
		students are selected at random from the class. The probability that both of them are
	mem	bers of a performing arts club is $\frac{1}{42}$.
	(b)	Find the number of students who are members in a performing arts club.
		Answer[3]
	In a	nother class, the probability that a student is a leader in a co-curricular activity is k . The pability that a student is in a performing arts club is m .
	(c)	Derrick claimed that the probability of a student in this class being a leader or is in a performing arts club is $k+m$. Explain with reasons whether you agree with Derrick's claim.
		[1]

22	The scale of a map is $1:n$. A school garden measuring 8 cm^2 on a map has an actual area of 2048 m^2 . Find n .
	Answer $n = \dots [2]$
23	4 technicians plan to repair 416 computers in 16 days. However, after repairing for 10 days, one of the technicians fell sick and could not continue. The remaining computers are to be repaired by the other three technicians. Assuming that the technicians work at the same rate, calculate the total number of days needed for all 416 computers to be repaired.
	Answer days [3]

24 The cumulative frequency diagram shows the time in hours that each of the 120 adults from Town A spend on exercise in one week.

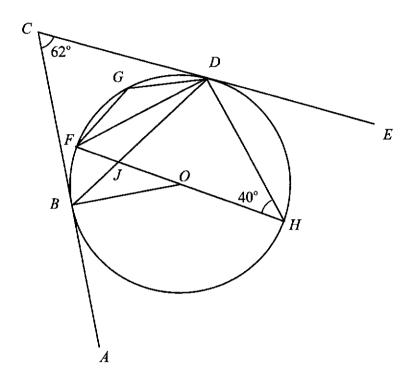


(a)	Explain if you can find the probability of an adult spending exactly 5 hours on exercise
	weekly.

F1:

(b) The health promotion board recommends at least k hours of weekly exercise for adults to stay fit and active. 60 % of the adults in Town A meet this recommended weekly exercise hours. Find the value of k.

The box-and-whisker plot shows the time in hours that each of the 120 adults from Town B spend on exercise in one week.


(c) Find the median and interquartile range of the weekly exercise hours of the adults in Town B.

Answer	Median = h [1]
	Interquartile range = h [1]

(d) Make two comparisons between the weekly exercise hours of the adults from Town A and Town B. State your reasons.

*************		************	
*******	*************************		
			• • • • • • • • • • • • • • • • • • • •
	•		
•••••••			
**************	*************************		[2]
			'

The lines ABC and CDE are tangents to the circle at B and D respectively. F, G and H are points on the circle and the centre of the circle is O. The straight lines BD and HF intersect at J. It is given that $\angle ACE = 62^{\circ}$ and $\angle DHF = 40^{\circ}$.

Find, giving reasons for each answer,

(a) $\angle FGD$,

Angwer	 O	[1]
Answer		Γ _T]

(b) ∠*CDO*,

		o	Г1
Answer	*************		Lı.

(c)	$\angle BOF$.	
ι~,		•

(c)	∠FJD .		. A	Inswer	•••••••	° [2]
			A	nswer	•••••	° [2]

A liquid container, 30 cm tall, can be modelled by a frustrum, A, placed below a cylinder B, as shown in Figure 1.

Figure 2 shows a sketch of the cone that the frustum A is a part of. The diameter QRS of the top of the frustrum, is 12 cm and the diameter VUT of the bottom is 8 cm. The height of the frustrum, RU is 9 cm. R and U are the midpoints of QS and VT respectively.

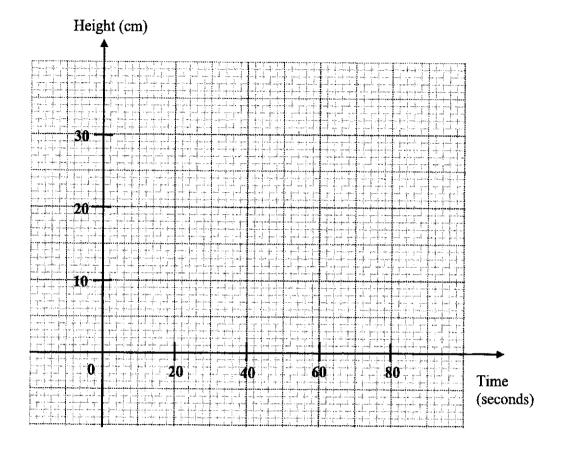
Figure 1

Figure 2

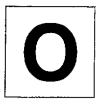
12 cm

9 cm

8 cm


T

(a) Calculate the volume of the frustrum, A.


Answer cm³ [3]

A liquid is poured into the container at a constant rate of q cm³ per second. It takes 50 seconds to fill up A completely and it takes another 30 seconds to fill up B completely.

(b) Sketch the height of the liquid in the container with respect to time.

[2]

ANDERSON SECONDARY SCHOOL Preliminary Examination 2024 Secondary Four Express and Five Normal

CANDIDATE NAME:		
CLASS:	/	INDEX NUMBER:
MATHEMATICS		4052/02
Paper 2		15 August 2024
		2 hours 15 minutes
		1100 – 1315h
Candidates answer or	n the Question Paper.	
Additional Materials:	Nil	

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue, correction fluid or tape.

Answer all questions on the answer spaces provided.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 90.

Setter: Mr Colin Chen

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere =
$$4\pi r^2$$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\Sigma fx}{\Sigma f}$$

Standard deviation =
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$$

L	A co	ne has	a radius of 24 cm and a total surface area of 1536π cm ² .	
	(a)	Shov	w that the volume of the cone is $6144 \pi \text{ cm}^3$.	[3]
	(b)	The c	cone is recasted into a solid sphere. Find	
		(i)	the radius of the sphere,	
			Answer	cm [2]
		(ii)	the total surface area of the sphere.	
			Answer	cm² [2]

2	(a)	Matthew invests \$20 000 into a fixed deposit at $r\%$ per month, compounded monthly. After 24 months he will be able to receive \$21 337.05.
		Find the value of r .

Answer $r = \dots [2]$		
------------------------	--	--

(b) Matthew buys a car on hire purchase. He made a 30% downpayment and takes up a 7 year loan which charges simple interest at 2.78% per annum. Given that he pays \$1774.40 monthly instalment for the car, calculate the price of the car. Give your answer correct to the nearest dollar.

Answer \$.....[3]

(c) Matthew wants to invest in Japanese Yen (JPY) to make a profit. In April, he bought JPY with SGD 980. In June, he sold the JPY to get his money back in Singapore dollars.

The exchange rates were:

- April: SGD 1 = JPY 114.5
- June: SGD 1 = JPY 118.2

Calculate the percentage profit or loss that Matthew made.

Answer	Matthew made a profit/loss of	%	[3]
	(circle the correct option)		

A chess club currently has 37 male members and 16 female members. The club hosted a Valentine's Day event to attract married couples to join the club as new members. (Both husband and wife must be totally new to the club.) After this event, the percentage of female members became 40%. Find the number of married couples who joined the club after the event.

Answer couples [3]

4	The marks of a group of 19 students in a test were recorded, as the marks are shown in
	the stem and leaf diagram. The mode is 42 marks.

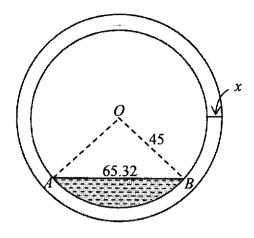
3	Stem				Leaf				
Key: 4 1 means 41 marks (i) Find the value of a and b. Answer a =	3	a	0	1	2	6			
Key: 4 1 means 41 marks (i) Find the value of a and b. Answer a =	4	1	2	2	2	6	7		
(ii) Find the value of a and b. Answer a =	5	0	2	4	4	b	5	8	9
(ii) Find the median mark. Answer Answer Calculate the mean and standard deviation of the marks. Answer mean =		Key:	4 1 me	eans 41 m	arks				
(iii) Find the median mark. Answer Answer (iii) Calculate the mean and standard deviation of the marks. Answer mean =	(i)	Find	the value	of a and	b .				
(iii) Find the median mark. Answer (iii) Calculate the mean and standard deviation of the marks. Answer mean =						A	Inswer a	!=	
(iii) Calculate the mean and standard deviation of the marks. Answer mean =							Ŀ	·=	[
(iii) Calculate the mean and standard deviation of the marks. Answer mean =	(ii)	Find	the media	an mark.					
(iii) Calculate the mean and standard deviation of the marks. Answer mean =	(11)	ı mu							
(iii) Calculate the mean and standard deviation of the marks. Answer mean =									r
Standard Deviation =						\boldsymbol{A}	nswer .		
(iv) Marks for another group of 20 students was also recorded. The results are summarized in the table below. Mean									-
(iv) Marks for another group of 20 students was also recorded. The results are summarized in the table below. Mean	(iii)	Calcu	ulate the r	nean and	standard :	deviation			-
(iv) Marks for another group of 20 students was also recorded. The results are summarized in the table below. Mean	(iii)	Calcu	ulate the r	nean and	standard	deviation			-
(iv) Marks for another group of 20 students was also recorded. The results are summarized in the table below. Mean	(iii)	Calcu	ulate the r				of the ma	arks.	
Standard Deviation 7.22 Make two comparisons between the marks obtain by the group of 19 student	(iii)	Calcu	ulate the r		inswer t	mean =	of the ma	arks.	[
Mean 48.2 Standard Deviation 7.22 Make two comparisons between the marks obtain by the group of 19 student	(iii)	Calcu	ulate the r		inswer t	mean =	of the ma	arks.	[
Standard Deviation 7.22 Make two comparisons between the marks obtain by the group of 19 student				A	Inswer 1	mean = Standard l	of the ma	arks. =	[
Make two comparisons between the marks obtain by the group of 19 student		Mark	cs for ano	A ther group	inswer t S	mean = Standard l	of the ma	arks. =	[
		Mark	cs for ano	ther group	inswer to stand the standard s	mean = Standard l udents wa	of the ma	arks. =	[
and by the group of 20 students.		Mark sum	cs for ano marized ir	ther group the table Mean Stand	inswer in September 1995 of 20 street below.	nean = Standard I udents wa 48 ation 7.	Deviation as also rec	erks.	[[ne results are
		Mark sum	cs for ano marized ir	ther group the table Mean Stand	inswer in September 1995 of 20 street below.	nean = Standard I udents wa 48 ation 7.	Deviation as also rec	erks.	[[ne results are
		Mark sumi	cs for ano marized in te two con	ther group the table Mean Stand	nswer 1 p of 20 stree below. lard Devia	nean = Standard I udents wa 48 ation 7.	Deviation as also rec	erks.	[[ne results are

5 (a) Adam has some 50-cent and 20-cent coins in his wallet. Given that he has a total of 73 coins adding up to a value of \$28.10, form 2 simultaneous equations to find the number of 50-cent and 20-cent coins he has.

Answer He has 50-cent coins and 20-cent coins [5]

(b)	Express	$\frac{4x}{4x^2-25}$	$\frac{1}{5-2x}$	as a single fraction in its simplest form
-----	---------	----------------------	------------------	---

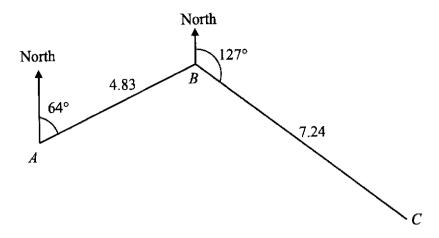
Answer[3]


- The position vectors of points A and B are $\begin{pmatrix} -9 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -12 \end{pmatrix}$ respectively.
 - (a) Find the column vector \overrightarrow{BA} .

(b) Find $|\overline{BA}|$.

Answer units [2]

The diagram shows the cross section of a plastic pipe. The arc AB is part of the circle with centre O and radius 45 mm. The pipe has an uniform thickness of x mm. The shaded area represents the cross-sectional area that is filled with water. AB = 65.32 mm.


(i) Show that $\angle AOB = 1.6243$ radians.

[2]

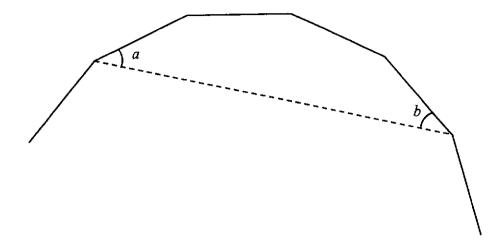
(ii) Given that the cross-sectional area of the pipe is 1398.29 mm^2 , find x.

Answer $x = \dots mm$ [2]

8

The diagram shows the positions of 3 points A, B, and C, at sea level. AB=4.83 km and BC=7.24 km. The bearing of B from A is 0.64° and the bearing of C from B is 1.27° .

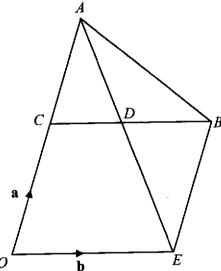
(i) Show that
$$AC = 10.368 \text{ km}$$
. [3]


(ii) Hence find the bearing of A from C.

Answer	 ٥	[3
211601001		L -

(iii)	A boat travels in a straight line from point B to reach the line AC . Find the shortest distance that the boat needs to travel.
	Answer km [2]
(iv)	An object was detected directly below point C . The angle of depression of the object from B is 12° . Find the distance of the object from C .
	Answer km [2]

BP~104


9 The diagram shows a part of a regular *n*-sided polygon.

Given $\angle a + \angle b = 72^{\circ}$, find the value of n.

Blank Page

10 CBEO is a parallelogram. The position vectors of C and E, relative to O, are a and b respectively.

It is given that 3BC = 5BD and $AD = \frac{2}{3}DE$.

- (a) Find, in terms of a and b,
 - (i) \overrightarrow{CD} ,

(ii)

 \overline{AD} .

Answer	 [1]

Answer[3]

(b) Is \overrightarrow{AC} parallel to \overrightarrow{OC} ? Justify your answer with appropriate working.

Answer

.....[2]

			15			
(c)	Find					
	(i)	$\frac{\text{area of } \Delta ADB}{\text{area of } \Delta ACD},$				
	(ii)	area of $\triangle ADC$ area of $\triangle AOE$		Answer		[1]
	(iii)	$\frac{\text{area of } \Delta ADB}{\text{area of } CDEO}$.		Answer	[2]

Answer[2]

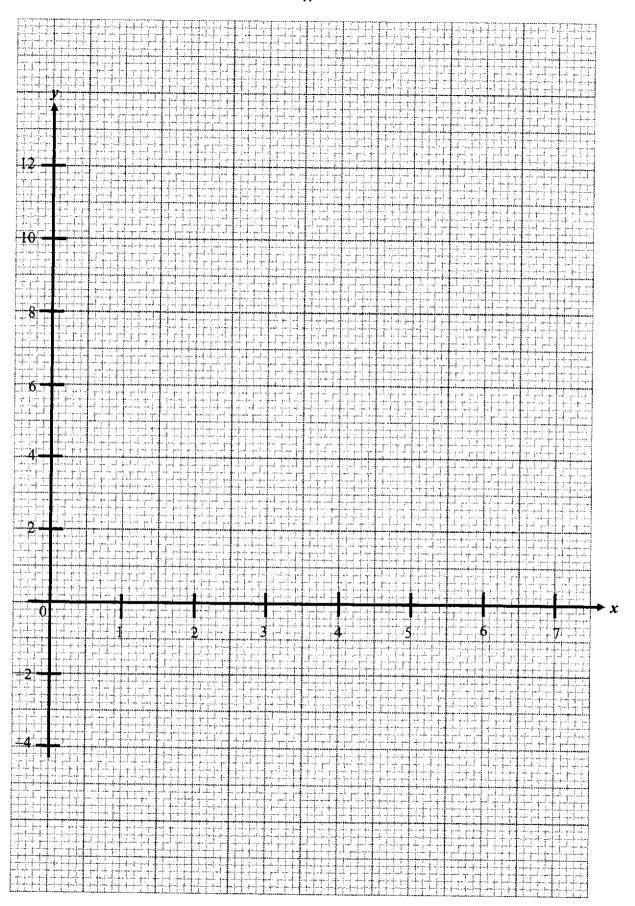
The variables x and y are connected by the equation $y = 2x + \frac{6}{x} - 7$.

Some corresponding values of x and y are given in the table below.

x	0.5	1	1.5	2	3	4	5	6	7
y	6	1	0	а	1	2.5	4.2	6	7.9

(a) Calculate the	(a))	Calcu	ılate	the	value	of	a.
-------------------	-----	---	-------	-------	-----	-------	----	----

Answer $a = \dots [1]$


(b) On the grid, draw the graph of
$$y = 2x + \frac{6}{x} - 7$$
 for $0.5 \le x \le 7$.

(c) The point A has coordinates (3,-1). A tangent to the curve can be drawn so that the tangent passes through A.

(i)	On the same grid draw this tangent.	[1]
-----	-------------------------------------	-----

(ii) Find the equation of this tangent.

(d) By drawing a suitable straight line on your graph, explain why the equation $3x^2 - 8x + 6 = 0$ has no solution for $0.5 \le x \le 7$.

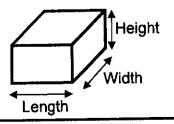
- Mr Tan took part in a 42 km marathon run. He used x minutes to run the first 25 km at a constant speed.
 - (a) Write down an expression, in terms of x, for his speed in km/h for the first 25 km.

Answer		km/h	[1]
--------	--	------	----	---

(c) For the last 17 km of the run, Mr Tan ran at a speed that is 2 km/h slower than his initial speed, and he took (x-22.5) minutes.

Write down an equation to represent this information and show that it simplifies to $2x^2 - 525x + 33750 = 0$. [3]

	(a)	Calva	22	505	22750	^
1	(C)	Soive	$2x^-$	323 <i>x</i> +	33750 =	: U.


(d) Given that Mr Tan took more than 4 hours to complete his run, find the time he took for the whole run. Give your answer in hours and minutes.

Answer min [2]

A book writer intends to sell her books to either Australia or Brazil, and she is planning to use Singapore post office Speedpost service to mail her books. The following table shows the mailing prices and other requirements.

		F	Package (Speedpo	st)
Destination	Weight Up To	Speedpost Express	Speedpost Priority	Speedpos Economy
	Document	\$25.00	\$ 20.00	
	2kg	\$61.00	\$39.00	\$26.00
Zone A Malaysia	sk	\$91.00	\$55.00	\$26,00
	10kg	\$122.00	\$78.00	\$ 43.00
natrozeń objectal Postornia	20 kg		Silko	\$66.00
	Document	\$50.00	\$45.00	
	2kg	\$108.00		\$97.00
Zone B Asia	5kg	\$180.00	\$ 123.00	\$37.00
	1044	\$269.00	\$182.00	\$64.00
	20kg	\$398.00	\$278.00	\$106.00
	Document	\$75.00	n in in in the contract of the	ulianti di Gundi. Andri destata
Zone C	2kg	\$ 159.00	\$ 107.00	\$80.00
Australia, New Zealand,	5kg	\$259.00	\$161.00	\$80.00
Europe, USA & Canada	10kg	\$400.00	\$232.00	\$135.00
	20kg	\$569.00	\$354.00	\$202.00
	Bossment	\$100.00	\$95.00	
Zone D		arrina, propinsi da describia 1961 - Paris Describia de 1967	\$155.00	\$86.00
Rest of	5kg	\$630.00	\$260.00	\$86.00
the World	10kg	\$929.00	\$386.00	\$160.00

- All rates are in Singapore dollars.
- GST is not applicable for international mail rates.
- The largest dimension should not exceed 400 mm, with length, width and height combined not exceeding 900 mm.

(a) The writer wants to send an 18 kg parcel using Speedpost Economy.
Calculate the percentage increase in the cost of sending to Brazil as compared to the cost of sending to Australia.

Answer % [2]

(b) All the books have the same dimension of 6 mm by 128 mm by 128 mm and weighs 75g each. The cost to manufacture each book is \$1.80.

The author hopes to earn a profit of \$3.00 for each book sold to Australia. By considering the manufacturing cost and the mailing cost to Australia, find the lowest possible price at which the writer should sell each book. Give your answer in dollars and cents correct to the nearest ten cents. Show your working clearly.

22

Answer \$[6]

END OF PAPER

Sec 4 Express Mathematics 2024 Prelims Marking Scheme

1	a(5a-2b)(5a+2b)		
	$=a\left(\left(5a\right)^{2}-\left(2b\right)^{2}\right)$		
	$=a(25a^2-4b^2)$	M1	Correct expansion
	$=25a^3-4ab^2$	A1	

2	$3^x + 3^{x+2} = 90$	
	$3^x + 3^x \times 3^2 = 90$	M1
	$3^x(1+9)=90$	
	$3^x = 9$	
	$3^x = 3^2$	
	x=2	A1

3	$2x^2 + 4xy - 3x - 6y$		
	$\frac{2x^2 + 4xy - 3x - 6y}{2x^2 + xy - 6y^2}$		
	$= \frac{2x(x+2y)-3(x+2y)}{2x^2+xy-6y^2}$	M1	Factorise by grouping for numerator
	$= \frac{(x+2y)(2x-3)}{2x^2 + xy - 6y^2}$		
	$= \frac{(x+2y)(2x-3)}{(2x-3y)(x+2y)}$	MI	Factorise denominator
	$=\frac{2x-3}{2x-3y}$	A1	

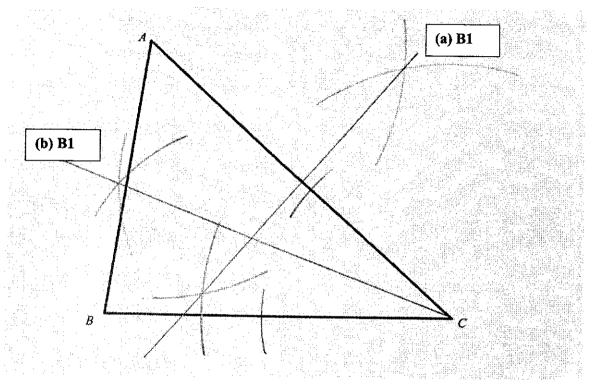
4	(a)	LCM of A and B is $q \times 3^{m+2} \times 7$ and at the same time the LCM of A and B is $3^3 \times 5 \times 7$.		
		m=1	B1	
	-	<i>q</i> = 5	B1	
	(b)	$A=3^3\times 7$ and $B=3\times 5\times 7$	_	
		= 21	B1	

5	The size/height of the bar graph.	B1	Stating that the graph does not start from zero is accepted too.
	It can be misleading because for example, the size/height of the graph in 2019 is twice that of the graph in 2010 but this does not represent their actual temperatures.	B1	A relevant example has to be given.

6	(a)	$\left(\frac{y^9}{27x^{-6}}\right)^{\frac{2}{3}}$		
		$= \frac{y^{9x\left(-\frac{2}{3}\right)}}{3^{3x\left(-\frac{2}{3}\right)}x^{-6x\left(-\frac{2}{3}\right)}}$	M1	Multiply $\left(-\frac{2}{3}\right)$ to each index
		$= \frac{y^{-6}}{3^{-2}x^4}$ $= \frac{3^2}{x^4y^6}$		0
		$=\frac{3^2}{x^4y^6}$	A1_	$\frac{9}{x^4 y^6} \text{ is also}$ accepted
	(b)	$\frac{25}{125^{2-x}} = 5^y$		
		$\frac{25}{125^{2-x}} = 5^{y}$ $\frac{5^{2}}{\left(5^{3}\right)^{2-x}} = 5^{y}$ $\frac{5^{2}}{5^{6-3x}} = 5^{y}$ $5^{2-6+3x} = 5^{y}$ $5^{3x-4} = 5^{y}$		Any other equivalent form of $5^m = 5^n$ will be accepted too
		$5^{2-6+3x} = 5^y$	M1	
		$\int_0^{3x-4} = 5^{\gamma}$		
		Comparing index,		
		3x-4=y		
		$x = \frac{y+4}{3}$	A1	
		<u> </u>		

7 ((a)	$9x^2 + 24xy + 16y^2$		
		$= (3x+4y)^2$	B1	
	(b)	Let $x = a^4$, $144a^8 - (9a^8 + 24a^4y + 16y^2)$ $= 144x^2 - (9x^2 + 24xy + 16y^2)$ $= (12x)^2 - (3x + 4y)^2$	M1	Attempt to factorise an expression in the form $a^2 - b^2$, after making use of part (a) answer
		= (12x+3x+4y)(12x-3x-4y) = $(15x+4y)(9x-4y)$		
		$=(15a^4+4y)(9a^4-4y)$	A1	

8	(a)	$q = \frac{k}{r^2}$, where k is the proportionality constant.		
		r^2 q and r are the initial intensity and distance		
		respectively.		
	+	When the distance is reduced by 40%, the new distance		
		3r	:	
		is $\frac{3r}{5}$.		
		New intensity		
		_ <u>k</u>		
		$\left(\frac{1}{3r}\right)^2$!	
		$\left(\frac{3r}{5}\right)^2$	M1	
	-	k		
		$=\frac{9r^2}{25}$ $=\frac{25k}{25}$		
		$\overline{25}$		
		25k		
		$=\frac{1}{9r^2}$		
		_ 25		
		$= \frac{23k}{9r^2}$ $= \frac{25}{9}q$	A1_	
	(b)	Percentage difference		$177\frac{7}{9}\%$ will be
•		$= \frac{\text{New Intensity} - \text{Initial Intensity}}{100\%} \times 100\%$		
		Initial Intensity		accepted too.
		$\frac{25}{a-a}$		
		$=\frac{\frac{25}{9}q-q}{q}\times 100\%$		
		1 4		
		$=\frac{16}{9}\times100\%$		
			B1	
	1	=178% (3 s.f.)	DI	<u> </u>


9	(0,1)		Both shape and y-intercept needs to be drawn and indicated correctly
		B1	

10	SC = RD (given)		No marks for this step
	$\angle SCD = \angle RDA$ (alternate angles)	M1	
	CD = DA (sides of a rhombus are equal)	M1	
	By SAS congruency test, triangle SCD is congruent to triangle RDA.	A1	

11	$x^2 - 10x - 2$	
	$=(x-5)^2-25-2$	
	$=(x-5)^2-27$	M1
	Minimum point is (5,-27)	A1

12	(a)	$n(\xi)$ $= 3 \times 3$ $= 9$	B1	
	(b)	$P = \{(-1,0),(0,-1),(0,0),(0,1)\}$	B1	
	(c)	$Q = \{(-2,1),(-1,1)\}$	B1	

13 The diagram below shows a triangle ABC.

Note that marks will not be awarded if relevant arcs are not drawn for parts (a) and (b) respectively.

14	(a)	n(W) = 2	B1	
	(b)	$\varnothing, \{0\}, \{\{0\}\}, \{0, \{0\}\}$	B1	
	(c)	$A \cup B' / (A' \cap B)' / (A \cup B)' \cup A / (A \cap B) \cup B'$	B1	

15	$x-3 \le \frac{5-x}{3} < \frac{x+1}{2}$		
	$ \begin{array}{c} x - 3 \le \frac{5 - x}{3} \\ 3x - 9 \le 5 - x \end{array} $		
1	$3x-9 \le 5-x$		
	$4x \le 14$		
	$x \le 3\frac{1}{2}$	M1	
	$\frac{5-x}{3} < \frac{x+1}{2}$		
	10-2x < 3x + 3		
	7 < 5x		
	$1\frac{2}{5} < x$	M1	
	$ \begin{array}{c c} 5 \\ 1\frac{2}{5} < x \le 3\frac{1}{2} \end{array} $	A1	

16	$\angle BAC = 90^{\circ}$ (right angle in a semicircle)	M1	
	$\cos \angle ABC = \frac{AB}{BC}$ $\frac{8}{17} = \frac{AB}{34}$		Only awarded with the relevant values substituted in this step.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	
	$AC = \sqrt{34^2 - 16^2} $ = 30		
	$\cos \angle ACD = -\cos \angle ACB$	M1	
	$= -\frac{AC}{BC}$ $= -\frac{30}{34}$ $= -\frac{15}{17}$	A1	

17	(a)	$T_7 = 8^2 - 7$ = 57	
		= 57	B1
	(b)	$T_n = (n+1)^2 - n$	B1
	(c)		
		$= n^{2} + 4n + 4 - n - 1 - \lceil n^{2} + 2n + 1 - n \rceil$	M1
		=2n+2	
		=2(n+1)	M1
		I agree. Since the difference $T_{n+1} - T_n$ is a multiple of 2,	
<u> </u>		hence the difference will always be an even integer.	A1

18	(a)	$15 \div 3 = 5$		
		$Q = \left(-2 + 5 \times 2, 1\right)$		
		=(8,1)	B1	
	(b)	Gradient of PR		
		= 4-1		
		$=\frac{4-1}{13-(-2)}$		
		$=\frac{1}{5}$		
			M1	
		Let the equation of the line PR be $y = mx + c$		
		1-1×13+c		
		$4 = \frac{1}{5} \times 13 + c$ $c = \frac{7}{5}$		
		$c = \frac{7}{2}$		
•		5		
		Equation of line PR:		
		$y = \frac{1}{5}x + \frac{7}{5}$	A1	
	(c)	W = (13,0)	B1	
	(3)	Learning of line comment OR		
	(d)	Length of line segment QR	M1	
		$=\sqrt{(13-8)^2+(4-1)^2}$		
		$=\sqrt{34}$		
		Perimeter of PQRS		
		$=2\times\sqrt{34}+2\times10$	M1	
	T	= 31.7 units (3 s.f.)	<u>A1</u>	

19	$ 20.3 \times 10^{3} \times 365 \\ = 7409500 $		
	$=7.41\times10^6$ (3 s.f.)	<u>B1</u>	

30	(-)		
20	(a)	$\mathbf{P} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$	
	(i)	(4.50)	B1
	(a)	$\mathbf{R} = \begin{pmatrix} 36 & 40 \\ 48 & 39 \\ 45 & x \end{pmatrix} \begin{pmatrix} 3 \\ 4.50 \end{pmatrix}$	
	(ii)	$ \mathbf{R} = 48 \cdot 30 (3)$	
		4.50	
		(43 x)	
		(288)	1
	<u> </u>	$= \begin{pmatrix} 288 \\ 319.5 \\ 135 + 4.5x \end{pmatrix}$	
		135 + 45 x	
		(155+4.5%)	B1
-	(b)	The almost in the second secon	
	(b)	The elements in matrix R represents the total	
		production cost for the muffins sold at Outlets A, B and C respectively.	To a
		C respectively.	B1
	(c)	1.7 R	
	(-)	(288)	
		=1.7 319.5	
		(135+4.5x)	M1
		(489.6)	
		= 543.15	
		(229.5+7.65x)	
		(225.5 1 1.05%)	
		(490 ()	
		$(5 \ 4 \)$	
		$ \left(\frac{5}{6} \frac{4}{5} 1\right) \left(\begin{array}{c} 489.6 \\ 543.15 \\ 229.5 + 7.65x \end{array}\right) $	
ĺ		(229.5 + 7.65x)	M1
		=(1072.02+7.65x)	
]		
	Ì	Total amount collected from sale	
		=\$(1072.02+7.65x)	
	 -	7(20,202)	A1
	(d)	1072.02 + 7.65x = 1454.52	
	(Ψ)	·	
		x = 50	B1

21	(a)	Number of students who are in a sports team		
		$=\frac{1}{3}\times36$	1	i
		$\left(-\frac{1}{3}\right)^{30}$		
		=12	ł	
		Number of leaders in a sports team		
		=12-4	B1	
<u></u>		= 8	- D1	
	(7)	Let the number of students who are members in a performing		
	(b)	Let the number of students who are members in a performing arts club be n .		
		P(both students selected are members in a performing arts club)		
!				
		$=\frac{n}{36}\times\frac{n-1}{35}$		
		36 35		
	-			
		Hence,		
		$\frac{n(n-1)}{n(n-1)} = \frac{1}{n-1}$	M1	İ
		1260 42	IVII	Completing
		n(n-1)=30		the square
		$n^2 - n - 30 = 0$		or quadratic
		(n-6)(n+5)=0	M1	formula is
	1	(" ")(" ")		accepted
				too.
-	†	n=6 or $n=-5$ (rej : n cannot be negative)	A1	
_	 			
	(c)	I disagree with Derrick's claim because;		•
	``	a student can be both a leader and in a performing arts club.		
	1	Or		
		being a leader and being in a performing arts club are not	B1	
		mutually exclusive.	1 22 1	1

22	8 cm ² : 2048 m ²		
	$= 1 \text{ cm}^2 : 256 \text{ m}^2$ = 1 cm ² : 2560000 cm ²	M1	
	= 1 cm : 1600 cm n = 1600	A1	
	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

23	4 technicians can repair 416 computers in 16 days		,
	4 technicians can repair 26 computers in 1 day		
	4 technicians can repair 260 computers in 10 days	M1	
	4 technicians can repair 156 computers in 6 days		
	1 technician can repair 156 computers in 24 days		
	3 technicians can repair 156 computers in 8 days	M1	
	Total number of days taken		
	=10+6	A1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

24	(a) (b)	No, you cannot because the cumulative frequency diagram only allows you to find probability of less than (less than or equals to) 5 weekly exercise hours or probability of at least (more than) 5 weekly exercise hours. $(100-60)\%\times120=48$ $k=3$						
	(c)	Town B	Lower Quartile 1.6	Median 2.8	Upper Quartile 5.8	Interquartile Range	B1 B1	1 mark correct median and 1 mark for correct interquartile range.
		Town	Lower Quartile	Median	Upper Quartile	Interquartile Range		
	(d) On average, the people in Town A have a higher weekly exercise hours than Town B since its median is higher. There is a larger spread in weekly exercise hours in Town B since its interquartile range is higher as compared to that in Town A.					B1		

(a)	/FGD 180° _ /FHD		
()			
	<u> </u>		
	=140°	B1	
(b)	$\angle CDO = 90^{\circ}$ (tangent \perp radius)	B1	
(c)	$\angle ODH = 40^{\circ}$ (base \angle of isosceles triangle)	M1	
	$\angle FOD = 40^{\circ} + 40^{\circ}$ (external angle of a triangle)		
	=80°		
	$\angle BOF = 360^{\circ} - 90^{\circ} - 90^{\circ} - 62^{\circ} - 80^{\circ}$ (\angle sum of		
	·	A1	
		PSA -	
(d)	$\angle BDF = \frac{38^{\circ}}{2}$ (angle at centre = 2× angle at		
	circumference)		}
	•	N/T1	
		IVII	
	$\angle OFD = \frac{180^{\circ} - 80^{\circ}}{2}$ (base \angle of isosceles triangle)		
	= 50°		
	$\angle FJD = 180^{\circ} - 50^{\circ} - 19^{\circ}$		
-	=111°	A1	
		$= 180^{\circ} - 40^{\circ} \text{ (angles in opposite segments)}$ $= 140^{\circ}$ (b) $\angle CDO = 90^{\circ} \text{ (tangent } \bot \text{ radius)}$ (c) $\angle ODH = 40^{\circ} \text{ (base } \angle \text{ of isosceles triangle)}$ $\angle FOD = 40^{\circ} + 40^{\circ} \text{ (external angle of a triangle)}$ $= 80^{\circ}$ $\angle BOF = 360^{\circ} - 90^{\circ} - 90^{\circ} - 62^{\circ} - 80^{\circ} \text{ (} \angle \text{ sum of quadrilateral } BODC\text{)}$ $= 38^{\circ}$ (d) $\angle BDF = \frac{38^{\circ}}{2} \text{ (angle at centre } = 2 \times \text{ angle at circumference)}$ $= 19^{\circ}$ $\angle OFD = \frac{180^{\circ} - 80^{\circ}}{2} \text{ (base } \angle \text{ of isosceles triangle)}$ $= 50^{\circ}$ $\angle FJD = 180^{\circ} - 50^{\circ} - 19^{\circ}$	$= 180^{\circ} - 40^{\circ} \text{ (angles in opposite segments)}$ $= 140^{\circ}$ B1 (b) $\angle CDO = 90^{\circ} \text{ (tangent } \bot \text{ radius)}$ B1 (c) $\angle ODH = 40^{\circ} \text{ (base } \angle \text{ of isosceles triangle)}$ $= 80^{\circ}$ $\angle BOF = 360^{\circ} - 90^{\circ} - 90^{\circ} - 62^{\circ} - 80^{\circ} \text{ (\angle sum of quadrilateral $BODC$)}$ $= 38^{\circ}$ A1 (d) $\angle BDF = \frac{38^{\circ}}{2} \text{ (angle at centre } = 2 \times \text{angle at circumference)}$ $= 19^{\circ}$ $\angle OFD = \frac{180^{\circ} - 80^{\circ}}{2} \text{ (base \angle of isosceles triangle)}$ $= 50^{\circ}$ $\angle FJD = 180^{\circ} - 50^{\circ} - 19^{\circ}$

26	(a)	Let the height of the cone in Figure 2 be h.		
20	(#)	Since triangle QWS is similar to triangle VWT, $\frac{h}{h-9} = \frac{12}{8}$	M1	
		12h - 108 = 8h $h = 27$		
		n = 21		
		Volume of A		
		$= \frac{1}{3}\pi(6^2)h - \frac{1}{3}\pi(4^2)(h-9)$	M1	
		$= \frac{1}{3}\pi (6^{2})h - \frac{1}{3}\pi (4^{2})(h-9)$ $= \frac{1}{3}\pi (36)(27) - \frac{1}{3}\pi (16)(18)$		
		$=\frac{1}{3}\pi[684]$		
		$\begin{vmatrix} 3 & 1 \\ = 228\pi \end{vmatrix}$		
		$=716 \text{ cm}^3 (3 \text{ s.f.})$	A1	
			ļ —	
	(b)	Height (cm) 10 (50,9) Time (seconds)	B1 B1	1 mark is for correctly plotted point (50,9). 1 mark is for the correct shapes for both graphs time from 0 to 50 and time 50 to 80 seconds.

4E EMath Prelim P2 2024 Mark Scheme

	ath Prelim P2 2024 Mark Scheme		
1a)	Since area = 1536π ,		
	$1536\pi = \pi(24)^2 + \pi(24)l$	M1	
	$l = 40 \mathrm{cm}$		
	height = $\sqrt{40^2 - 24^2}$ = 32 cm	3.61	
		M1	
	Volume of cone = $\frac{1}{3} \times (24)^2 \times \pi \times 32$		
	$= 6144\pi \mathrm{cm}^3 \mathrm{(Shosen)}$	A 1	
lbi)	$6144\pi = \frac{4}{3} \times \pi \times r^{3}$ $r = \sqrt[3]{\frac{6144(3)}{4}}$	M1	
	$0144\pi = -\times \pi \times r^{3}$		
	6144(3)		
	$r=\sqrt[3]{\frac{1}{4}}$		
	=16,641	ĺ	
	=16.6 cm (to 3 s.f.)	AT	
1bii)	Surface area = $4\pi(16.641)^2$	A1 M1	
,	= 3479.91555	1411	1
	$= 3479.91333$ $= 3480 \text{ cm}^2 \text{ (to 3 s.f.)}$	A1	
	3 100 cm (10 3 3.1.)		
2a)	(r) ²⁴		
	$20000 \left(1 + \frac{r}{100}\right)^{24} = 21337.05$	M1	
	$\left(1 + \frac{r}{100}\right)^{24} = \frac{21337.05}{20000}$		
	$1 + \frac{r}{100} = 2\sqrt[4]{\frac{21337.05}{20000}}$		
	$1 + \frac{1}{100} = \sqrt[3]{20000}$	i	
	=1.002700002		
	r = 0.270 (to 3 s.f.)	A1	
2b)	$loan amount = \$1774.40 \times 84$		
	= \$149049.60		
	$100\%+2.78\%\times7=119.46\%$ Loan amount without interest		
	$=$149049.60 \times \frac{100\%}{119.46\%}$	M1	
	=\$124769.4626		
	1000/		
	Price of Car = $$124769.4626 \times \frac{100\%}{70\%}$	M1	
	= \$178242 (nearest dollar)	A1	
2c)	April: SGD980 = JPY112210	M1	
	June: JPY112210=SGD949.32318		
	Percentage loss = $\frac{949.32318 - 980}{100\%} \times 100\%$		
	980	M1	
	=-3.13% (to 3 s.f.)	A1	Must circle loss.
			

	T 1 C		
3)	Let the number of couples needed be x . $16+x$ = 0.4	M1	
	$\frac{37+16+x+x}{37+16+x+x}$	M1	
	16 + x = 0.4(53 + 2x)	IVII	
	16 + x = 21.2 + 0.8x		
	x = 26	Al	
4i)	a = 0	B1	
	b = 5	B1	
4ii)	46	B1	
4iii)	mean = 45.1	B1	
	Standard Deviation = 9.58	B1	
4iv)	The group of 20 students have higher marks since the		
,	mean is higher, and	B1	
	they have more consistent marks as their standard		
	deviation is lower.	B1	
	. 1 1-41-	<u> </u>	
5a)	Let y be the number of 50 cent coins and x be the		
	number of 20 cent coins.	M1	Forming 1st equation
	y + x = 73 (1)	M1	Forming 2nd equation
	(y)0.5+(x)0.2=28.10(2)	141.1	1 01111111g 211d Oquation
	From (2)		
	(y) = 56.2 - 0.4(x)(3)		
	Sub (3) into (1)		
	56.2 - 0.4x + x = 73	M1	For performing
	0.6x = 16.8	141.1	substitution/elimination
	$\begin{array}{c} 0.0x = 10.8 \\ x = 28 \end{array}$		Substitution Cilimination
	y = 73 - 28 = 45		
	They have 45 50-cent coins and 28 20-cent coins.	A1	A1 for 45 and A1 for 28
	They have 45 50-cent coms and 26 26 cont come.	A1	
5h)	4x 1	T	
5b)			
	$(2x)^2 - (5)^2 (2x-5)$		
	= $4x$ 1	M1	Factorise first
	$=\frac{4x}{(2x-5)(2x+5)}-\frac{1}{(2x-5)}$		denominator
i	4x - (2x + 5)	M1	Combine into single
	$=\frac{4x-(2x+5)}{(2x-5)(2x+5)}$		fraction
	$=\frac{4x-2x-5}{(2x-5)(2x+5)}$		
Ì	$=\frac{2x-5}{}$		
	$=\frac{2x-5}{(2x-5)(2x+5)}$		į
	1		
	$={2x+5}$	A1	

	· · · · · · · · · · · · · · · · · · ·		
6a)	$\overrightarrow{BA} = \overrightarrow{BO} + \overrightarrow{OA}$		
	$= {1 \choose 12} + {9 \choose 3}$		
	$\lceil -(12) \rceil (3)$		
	$= \begin{pmatrix} -10 \\ 15 \end{pmatrix}$		
	= (15)	B1	
6b)	$\left \overline{BA} \right = \sqrt{\left(-10\right)^2 + \left(15\right)^2}$	M1	
	=18.0 units (to 3 s.f.)	4.1	
	-10.5 times (to 5 s.i.)	A1	
7i)	Let m be the mid point of AB .		
	$MB = \frac{1}{2}(65.32)$ (property of chord)		
	= 32.66 mm		
	$\angle MOB = \sin^{-1}\left(\frac{32.66}{45}\right)$	M1	M1 for using sine
		141	MIT TOT USING SINE
	$= 0.81216 \text{ rad}$ $\angle AOB = 2\angle MOB$		
	=1.624328		
	=1.6243 rad (shown)	A1	
7ii)	$\pi(45+x)^2 - \pi(45)^2 = 1389.29$	M1	
	$(45+x)^2 - (45)^2 = 445.08953$		
	x = 4.699		
	= 4.70 mm (to 3 s.f.)	Al	
8i)	/APN 1909 649 1169 6-4 /- N //N	3.71	
OI)	$\angle ABN_B = 180^{\circ} - 64^{\circ} = 116^{\circ} \text{ (int } \angle \text{s, } N_A //N_B)$ $\angle ABC = 360^{\circ} - 127^{\circ} - 116^{\circ} \text{ (} \angle \text{s at a pt.)}$	M1	Must give reason
	$=117^{\circ}$		
	$AC = \sqrt{4.83^2 + 7.24^2 - 2(4.83)(7.24)\cos 117^\circ}$	M1	Use cosine rule
	$= 10.368 \text{ km} \qquad \text{(shown)}$	A1	
8ii)	sin117° sin∠BCA	M1	Use sine rule
	10.368 4.83		
	$\angle BCA = 24.52443^{\circ}$ (5 d.p.)		
	Bearing of A from C Reflex $\angle N_c CB = 360^{\circ} - 24.52443^{\circ} - (180^{\circ} - 127^{\circ})$	M1	
	$= 282.47557^{\circ}$		
	Bearing of A from $C = 282.5^{\circ}$ (1 d.p.)		
8iii)	Shortest distance = $7.24 \times \sin 24.52443^{\circ}$	<u>A1</u> M1	
,	= 3.00518	1411	
<u> </u>	$= 3.01 \mathrm{km}$ (to 3 s.f.)	A1	
8iv)	Distance of object to $C = 7.24 \times \tan 12^{\circ}$	M1	
	$=1.54 \mathrm{km} (\mathrm{to} 3 \mathrm{s.f.})$	A1	

	Table 1		
9	Let interior angle of polygon be x. $3x + \angle a + \angle b = (5-2) \times 180^{\circ}$	M1	
	$3x + 72^\circ = 540^\circ$		
	$x=156^{\circ}$	M1	
	$n = \frac{360^{\circ}}{180^{\circ} - 156^{\circ}}$		
		A 1	
	=15		
10ai)	2	B1	
1041)	$\frac{2}{5}b$		
10aii)	$\overrightarrow{DE} = \overrightarrow{DC} + \overrightarrow{CO} + \overrightarrow{OE}$		
	2,	N/1	
	$=-\frac{2}{5}b-a+b$	M1	
	$=-a+\frac{3}{5}b$		
	$\overline{AD} = \frac{2}{3} \left(-a + \frac{3}{5}b \right)$	3.61	1
		M1	
	$=\frac{2}{b}-\frac{2}{a}a$	A1	
101)	$= \frac{2}{5}b - \frac{2}{3}a$ $\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC}$		
10b)	AC = AD + DC		
	$= -\frac{2}{3}a$ $= -\frac{2}{3}\overrightarrow{OC}$	i	
	2	M1	
	$=-\frac{2}{3}OC$	IVI	
	therefor \overrightarrow{AC} is parallel to \overrightarrow{OC} .	A1	
10ci)	Let h be the common height of $\triangle ADB$ and $\triangle ACD$		
	from A to CB .		
	$\frac{\text{area of } \triangle ADB}{\triangle ADB} = \frac{\frac{1}{2} \times DB \times h}{1}$		
	$\frac{\text{area of } \Delta ADB}{\text{area of } \Delta ACD} = \frac{\frac{1}{2} \times DB \times h}{\frac{1}{2} \times CD \times h}$		
	$\frac{1}{2} \times CD \times h$		
	$=\frac{3}{2}$	B 1	
10cii)	Since $\frac{AC}{AO} = \frac{AD}{AE} = \frac{CD}{OE}$		
	AO AE $OE\triangle ADC is similar to \triangle AOE.$		
	$\frac{\text{area of } \Delta ADB}{\text{area of } \Delta ACD} = \left(\frac{2}{5}\right)^2$	M1	
		A1	
	$=\frac{4}{25}$		
10ciii		· -	
Totali	=6:4:25		
	area of $\triangle ADB$ 6	3.61	MI for finding the ratio
	$\frac{1}{25-4}$	M1	M1 for finding the ratio of area of CDEO
	$=\frac{2}{7}$	A1	relative to
	7		area of ΔADB

4E Prelim Math 2023

y = -x + 1 working ste	er of these 2 eps. wing graph.
• smooth curve 11ci) Refer to graph 11cii) Gradient = $\frac{0.8 - (-1)}{0 - 3}$ = -0.6 ± 0.1 M1 $y = -0.6x + 0.8$ y-intercept ± 0.1 11d) $3x^2 - 8x + 6 = 0$ $2x + \frac{6}{x} - 7 = -x + 1$ Draw graph $y = -x + 1$. Draw graph $y = -x + 1$. $3x^2 - 8x + 6 = 0$ has no solution because $y = 2x + \frac{6}{x} - 7$ and $y = -x + 1$ do not intersect for $0.5 \le x \le 7$ 12a) $\frac{1500}{x}$ B1 12b) $\frac{1500}{x} - \frac{17}{x - 22.5} = 2$ M1 M1 M1 for eith working stem of the second of the secon	eps.
11ci) Refer to graph B1 11cii) Gradient = $\frac{0.8 - (-1)}{0 - 3}$ M1 M1 M1 for eith working stems of the state of t	eps.
11cii) Gradient = $\frac{0.8 - (-1)}{0 - 3}$ = -0.6 ± 0.1 M1 M1 M1 M1 for eith working stem M1 M2 M1 for eith working stem M1 M2 M1 for draw M2 $x = x + 6 = 0$ $2x + \frac{6}{x} - 7 = -x + 1$ M1 M1 for eith working stem M1 for draw M1 for draw M1 for draw M1 M1 for draw M1 M1 for draw M1 for draw M1 M1 for draw M	eps.
Gradient = $\frac{-0.3}{0-3}$ = -0.6 ±0.1 M1 M1 M1 M1 for eith working stem M1 M2 M1 for draw M1 M2 M1 for draw M2 m2 m2 m2 m2 m2 m3 m2 m3	eps.
	eps.
$y = -0.6x + 0.8$ y -intercept ± 0.1 A1 $3x^2 - 8x + 6 = 0$ $3x - 8 + \frac{6}{x} = 0$ $2x + \frac{6}{x} - 7 = -x + 1$ $y = -x + 1$ $y = -x + 1$ M1 M1 for eith working stern workin	eps.
11d) $3x^{2}-8x+6=0$ $3x-8+\frac{6}{x}=0$ $2x+\frac{6}{x}-7=-x+1$ y=-x+1 Draw graph $y=-x+1$. $3x^{2}-8x+6=0$ has no solution because $y=2x+\frac{6}{x}-7$ and $y=-x+1$ do not intersect for 0.5 \le x \le 7 12a) $\frac{1500}{x}$ B1 12b) $\frac{1500}{x}-\frac{17}{x-22.5}=2$ M1 M1 M1 for eith working stern M1 M1 M1 for eith working stern M1	eps.
$3x-8+\frac{6}{x}=0$ $2x+\frac{6}{x}-7=-x+1$ $y=-x+1$ Draw graph $y=-x+1$. $3x^2-8x+6=0$ has no solution because $y=2x+\frac{6}{x}-7 \text{ and } y=-x+1 \text{ do not intersect for } 0.5 \le x \le 7$ M1 M1 for eith working stem of the stem of th	eps.
Draw graph $y = -x + 1$. $3x^2 - 8x + 6 = 0$ has no solution because $y = 2x + \frac{6}{x} - 7$ and $y = -x + 1$ do not intersect for $0.5 \le x \le 7$ 12a) $\frac{1500}{x}$ B1 12b) $\frac{1500}{x} - \frac{17}{x - 22.5} = 2$ M1 M1 for eith working ste M1 M1 for eith working ste M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M2 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M2 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M2 M2 M2 M3 M1 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M4 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M5	eps.
Draw graph $y = -x + 1$. $3x^2 - 8x + 6 = 0$ has no solution because $y = 2x + \frac{6}{x} - 7$ and $y = -x + 1$ do not intersect for $0.5 \le x \le 7$ 12a) $\frac{1500}{x}$ B1 12b) $\frac{1500}{x} - \frac{17}{x - 22.5} = 2$ M1 M1 for eith working ste M1 M1 for eith working ste M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M2 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M2 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M2 M2 M2 M3 M1 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M4 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M5	eps.
Draw graph $y = -x + 1$. $3x^2 - 8x + 6 = 0$ has no solution because $y = 2x + \frac{6}{x} - 7$ and $y = -x + 1$ do not intersect for $0.5 \le x \le 7$ 12a) $\frac{1500}{x}$ B1 12b) $\frac{1500}{x} - \frac{17}{x - 22.5} = 2$ M1 M1 for eith working ste M1 M1 for eith working ste M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M2 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M2 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M2 M2 M2 M3 M1 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M4 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M3 M4 M3 M3 M3 M3 M5	eps.
Draw graph $y = -x + 1$. $3x^2 - 8x + 6 = 0$ has no solution because $y = 2x + \frac{6}{x} - 7$ and $y = -x + 1$ do not intersect for $0.5 \le x \le 7$ 12a) $\frac{1500}{x}$ B1 12b) $\frac{1500}{x} - \frac{17}{x - 22.5} = 2$ M1 M1 for eith working ste M1 M1 for eith working ste M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1 M1 M1 for eith working ste M1	eps.
Draw graph $y = -x + 1$. $3x^2 - 8x + 6 = 0$ has no solution because $y = 2x + \frac{6}{x} - 7$ and $y = -x + 1$ do not intersect for 0.5 \le x \le 7 12a) $\frac{1500}{x}$ B1 12b) $\frac{1500}{x} - \frac{17}{x - 22.5} = 2$ M1	
$3x^{2} - 8x + 6 = 0 \text{ has no solution because}$ $y = 2x + \frac{6}{x} - 7 \text{ and } y = -x + 1 \text{ do not intersect for}$ $0.5 \le x \le 7$ A1 12a) $\frac{1500}{x}$ B1 12b) $\frac{1500}{x} - \frac{17}{x - 22.5} = 2$ M1	
$y = 2x + \frac{6}{x} - 7 \text{ and } y = -x + 1 \text{ do not intersect for} $ $0.5 \le x \le 7$ B1 12a) $\frac{1500}{x}$ B1 12b) $\frac{1500}{x} - \frac{17}{x - 22.5} = 2$ M1	
$ \begin{array}{c ccccc} 0.5 \le x \le 7 \\ \hline 12a) & \frac{1500}{x} \\ \hline 12b) & \frac{1500}{x} - \frac{17}{x - 22.5} = 2 \\ \hline M1 \end{array} $	
$ \frac{12b}{x} = \frac{1500}{x} - \frac{17}{x - 22.5} = 2 $ M1	
$ \frac{12b}{x} = \frac{1500}{x} - \frac{17}{x - 22.5} = 2 $ M1	
$\frac{12b)}{x} - \frac{17}{\frac{x - 22.5}{60}} = 2$ M1	
60	
60	
$\frac{1500}{x} - \frac{1020}{x - 22.5} = 2$	
1 x x-22.5	
$\begin{vmatrix} 1500(x-22.5)-1020x = 2(x^2-22.5x) \\ 2x^2 + 22x = 200000 \end{vmatrix}$ M1	
$2x^2 - 525x + 33750 = 0 (shown) A1$	
12c) $x = \frac{-(-525) \pm \sqrt{(-525)^2 - 4(2)(33750)}}{2(2)}$ M1	
$x = {2(2)}$ M1	
$525 \pm \sqrt{5625}$	
4	
	İ
$= 150 \text{or} = 112.5 \qquad \qquad \text{A1} \qquad \text{A1 for each}$	solution
A1	
12d) Total time taken = $x+(x-22.5)=2x-22.5$ minutes	
When $x = 112.5$	
Total time = $2(112.5) - 22.5$	
= 202.5 mins (reject since total time >4 hours)	
When $x = 150$ M1 Must reject	with reason.
Total time = $2(150) - 22.5$	
= 277.5 mins	Ì
= 4h 37.5min	

		Configuration 1	400 mm	128 mm	Configuration 2	400 Employed Annual Control of Co	mm mm mm mm mm mm mm mm	128 mm 128 mm		Configuration 3	388 mm 128 mm	128 mm 128 mm
			These 3 M1 can be	allocated to any of the 3 configurations, MI for max height,	MI for max weight.							
M1	A1	<u> </u>	M1	M M								M1
Percentage difference = $\frac{282 - 202}{202} \times 100\%$	202 = 39.60396 = 39.6% (to 3 s.f.)	The books can be stacked into columns. The configuration of the columns will fit into boxes.	Configuration 1 (1 column) Max height = $900-128-128 = 644$	Exceed max 400mm Max books = $400 \div 6 \approx 66$ books Total weight = $66 \times 75 = 4950$ g	Configuration 2 (2 columns) Max height $= 900-128-128=516$ Fxceed max 400mm	Max books per column = $400 \div 6 = 66\frac{2}{3} \approx 66$ books	Max books = $66 \times 2 = 132$ books Total weight = $132 \times 75 = 9900$ g	Configuration 3 (4 columns) Max height = $900-128-128-128=388$	Max books per column = $388 \div 6 = 64\frac{2}{3} \approx 64$ books	Max books = $64 \times 4 = 256$ books Total weight = $256 \times 75 = 19200$ g		
13a)		13b)									<u> </u>	

N

4E Prelim Math 2023