

GREENRIDGE SECONDARY SCHOOL 2024 PRELIMINARY EXAMINATION SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

CANDIDATE NAME	
CLASS -	INDEX NUMBER
MATHEMATICS	4052/01
Paper 1	22 August 2024
Setter: Mr Chin Zhi Hao	2 hours 15 minutes
Candidates answer on the Question Paper.	
Additional Materials: Nil	

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 90.

This paper consists of 22 printed pages, including this cover page.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer	all	the	a	uestions
	***	***	-	********

		This wor an the questions.	
1	(a)	Calculate $\frac{\sqrt[3]{123^2}}{\frac{3}{5.01} + 2}$.	
	(b)	Answer	[1]
Pa,-10081		Answer \$	[1]
2	(a)	Given that $9^{12} = 27^x$, find x.	
		Answer x =	[2]
	(b)	The number of people owning cars in a country increased by $p\%$ every year, from 5000 in the year 2020, to 6500 in the year 2024.	
		Find the value of p .	

3 School students were surveyed on their favourite brand of drink. The results are represented in the pie chart below.

(a)	State	one	error	in	the	pie	chart	above
-----	-------	-----	-------	----	-----	-----	-------	-------

Answer		
	***************************************	[1]

(b) State one way to correct the error stated in	part (a)
--	--------	---	---

Answer		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	,	[1]

4 Factorise $6x^2 - x - 2$.

	·	
Answer		[2]

5	117	2	3	
3	write	$\overline{x-2}$	2x+1	as a single fraction in its simplest form.

Answer	•••••	[2]
--------	-------	-----

6 Six positive integers have a mean of 15, a median of 15 and a mode of 16. The range of these numbers is 7. Find the six numbers.

7 Solve the inequality $\frac{2x-3}{4} \le \frac{5-x}{5}$.

8	(a)	Convert 40° into radians. Leave your answer	ers in term	as of π .	
				Poss	r11
			Answer	radians	[1]
	(b)	Convert 23 km/h into m/s.			
			Answer	m/s	[1]
			· · · · · · · · · · · · · · · · · · ·	Y	
9	Calo	culate the total surface area of a solid hemisp	here with	radius 6 cm.	
			Answer	cm ²	[2]

$$10 \qquad 2c + b = \frac{b - c}{a}$$

Rearrange the formula to make b the subject.

11 Triangle ABC is such that AB = 16 cm, BC = 63 cm, AC = 65 cm. Do points A, B and C lie on the circumference of a circle? Explain with working.

Answer

12	(a)	Factorise $a^2b^4 - ab^2$.			
	(b)	Expand and simplify $(3x + 2)^2 + 4x(2 - x)$.	Answer		[1]
			Answer		[3]
13	(a)	Find the area of a regular hexagon with eac	h side 7 c	m.	
	(b)	Find the interior angle of a regular 15-sided		cm²	[2]
			Answer		[1]

14	(a)	y is directly proportional to $\sqrt[3]{x}$.
		Find the percentage increase of y when x increases by 700%.

Answer % [2]

(b) 6 men took 50 hours to paint a mural wall. How long does it take for 4 men to paint the same wall?

Answer hours [2]

15	The p	g contains some green counters, some orange counters and some yellow counters. probability of picking a green counter at random is 0.2. probability of picking an orange counter at random is 0.1 more than the probability of sing a yellow counter at random.	
	(a)	Show that the probability of picking a yellow counter at random is 0.35.	
	Ansv	ver	
			[1]
	(b)	If there are 14 yellow counters, how many counters are there altogether?	[-]
	(b)	If there are 14 yerrow counters, now many counters are there are general	
		Answer counters	[2]
	(c)	If 3 orange counters are removed, what is the new probability of picking a yellow counter at random?	
		Answer	[1]

The figure below shows a circle with centre O. Points A, B and C lie on the circle. Angle $ABC = 100^{\circ}$. Find angle OAC, giving reasons for each step of your working.

Answer Angle OAC = [4]

(a)	These are the first four terms	s of a se	quence	:.			
		2	6	10	14		
	Find an expression, in terms	of n, fo	r the n	th term of	f the sequence.		
				4		F13	
				Answer	·	[1]	
(b)	One term in the sequence is Find the value of n for this t	82. term.					
				A == ==		[1]	
	Eurlain miles 260 is mot a to	-m afth	ic cean			[1]	
Ans							
						F4.7	
						[1]	
(d)	The sum of the first n terms Find the 8^{th} term of this seq	s of anou	ther sec	quence is	$-4n^2+54n.$		
						 -	
				Answei	r	[2]	
	(c) <i>Ans</i>	Find an expression, in terms (b) One term in the sequence is Find the value of n for this to the valu	Find an expression, in terms of n, for the value of n for this term. (c) Explain why 360 is not a term of the Answer	Explain why 360 is not a term of this sequence. (c) Explain why 360 is not a term of this sequence. (d) The sum of the first n terms of another second in terms of another second in terms.	Find an expression, in terms of n, for the nth term of the nth term of the nth term of the nth term of the value of n for this term. Answer (c) Explain why 360 is not a term of this sequence. Answer (d) The sum of the first n terms of another sequence is Find the 8th term of this sequence.	2 6 10 14 Find an expression, in terms of n, for the nth term of the sequence. Answer (b) One term in the sequence is 82. Find the value of n for this term. Answer (c) Explain why 360 is not a term of this sequence. Answer (d) The sum of the first n terms of another sequence is $-4n^2 + 54n$.	

18 (a) $x^2 - 4x + 5 = (x - a)^2 + b$ Find the value of a and of b.

Answer	<i>a</i> =	
	b =	[2]

(b) The curve $y = x^2 - 4x + 5$ is drawn.

Write down the equation of the line of symmetry of the curve.

4		
Answer	************	111

(c) Sketch the curve $y = x^2 - 4x + 5$ on the axes below. Indicate clearly the coordinates of the points where the graph crosses the axes and the minimum point on the curve.

Answer

[3]

Siti has x number of \$5 notes. Aisha has y number of \$2 notes.

They have a total of 30 notes with total value \$111.

Form and solve two simultaneous equations to calculate the amount of money Siti has.

20 The number of customers, c, served in a day at a counter for 40 days are given below.

Number of customers c	0 < c ≤ 5	$5 < c \le 10$	$10 < c \le 15$	$15 < c \le 20$
Frequency	11	18	9	2

(a) Calculate the ineal humber of customers serve	(a)	Calculate the mean	number of	customers	serve
---	-----	--------------------	-----------	-----------	-------

Answer	***************************************	customers	[1]

(b) Calculate the standard deviation.

		Answer customers	[1]
(c)		more customers were added to the counter each day, how would the mean and indard deviation be affected by this change?	
Ans	wer	Mean	
		Standard deviation	
			[2]

[Turn over

21	(a)	Express 5500 as a product of its prime fact	ors.		
21	(b)	The number $\frac{5500p}{q}$ is a perfect cube. p and q are prime numbers. Find the value of p and the value of q.			[1]
			A		
			Answer	<i>p</i> =	
				<i>q</i> =	[2]
	(c)	Bus A takes 50 minutes to complete a rout route. Bus C takes 75 minutes to complete bus stop at 6 am one morning. What time	the same	route. All 3 buses left the same	
			Answer		[2]

22 A, B and C are three points on horizontal ground. The bearing of A from B is 040° .

(a) Find the bearing of B from A.

Answer	***************************************	[2]
	***************************************	L

(b) Find the bearing of C from A.

A concert offers three types of seating areas, A, B and C, for Saturday and Sunday. The numbers of tickets sold for each type of seating area on each of these days in a particular week are shown in the following table.

	A	В	C
Saturday	1100	1000	1200
Sunday	1400	1200	1300

(a) The information in the table can be represented by a 2×3 matrix S. Write down the matrix S.

Answer
$$S = [1]$$

(b) Each ticket for type A, B and C seating area costs \$110, \$80 and x respectively. Write down a 3×1 matrix P to represent this information.

Answer
$$\mathbf{P} = [1]$$

(c) Find, in terms of x, the matrix T = SP.

Answer
$$T = [2]$$

(d)	Explain what is represented by the elements of matrix T.
	Answer
(a)	The comment callested \$600 500 from the sale of the Calles of the sale of the
(e)	The company collected \$688 500 from the sale of tickets for the weekend. Find the value of x .
	•
	Answer $x = \dots $ [2]

24 The triangle with vertices A(2, 5), B(-2, -3) and C(2, -2) is shown in the diagram below.

Find

(a) the area of triangle ABC,

Answer	unit ²	[1]
--------	-------------------	-----

(b) the coordinates of point D such that ABCD is a parallelogram,

(c)	the area of parallelogram ABCD,			
(d)	angle BAC ,	Answer	unit ²	[1]
(e)	the gradient of line AC ,	Answer	Angle <i>BAC</i> =	[1]
(f)	the cosine value of angle BCA in terms of p	Answer		[1]
		Answer	,	[1]

25 The diagram shows the map of a park in the shape of a quadrilateral ABCD. The scale of the map is 1 cm to 10 m.

(a) Construct the bisector of angle ABC. [1]
(b) Construct the perpendicular bisector of AB. [1]
(c) Shade the region inside ABCD that is closer to AB than to BC and closer to B than to A. [1]
(d) A tree T is located inside the park ABCD such that it is 30 m from D and equidistant from A and B. Mark and label the exact position of T. [1]

END OF PAPER

GREENRIDGE SECONDARY SCHOOL 2024 PRELIMINARY EXAMINATION SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

CANDIDATE NAME				
CLASS -	INDEX NUMBER			
MATHEMATICS	4052/02			
Paper 2	23 August 2024			
Setter: Mrs Li Geok Eng	2 hour 15 minutes			
Candidates answer on the Question Paper.				
Additional Materials: Nil				

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 90.

For Examiner's Use

Total

90

Turn over

This paper consists of 23 printed pages, including this cover page.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions.

1	(a)	Simplify	$5a^3$	2 <i>ab</i>
•	(a)	эшфшу	$\overline{6b}$	$\sqrt{4a^2b}$

Answer	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[1]

(b) Solve
$$\frac{x}{8} = \frac{50}{x}$$
.

Answer
$$x =$$
 or [2]

(c) Simplify
$$\frac{4v^2-1}{2pv+p-10v-5}$$
.

4

(d) Solve $2x^2 = 3(3x-1)$. Give your solutions correct to two decimal places. Answer

Answer x = or [4]

2	(a)	Hamid borrowed a sum of money for 3 years at an interest rate of 3.5% per annum simple interest to pay for his car.				
	If the total interest Hamid paid on the loan was \$10 374, find the sum of money tha he borrowed.					
			Answer \$	[2]		
	(b)	The table shows information collected by	Hamid about his driving in 2023.			
		Total distance driven in 2023	16 992 km			
		Average price paid for petrol Average petrol consumption of his car	\$2.72 per litre 6.7 litres per 100 km			
		Average petrol consumption of his car	0.7 lides per 100 km			
		Calculate the total amount Hamid paid for	petrol in 2023.			
			Answer \$	[2]		

(c)	At the start of 2020, Hamid bought his car at a cash price of \$120 500. Each year the value of the car decreases by 5% of its value at the start of the yea At the end of 2023, Hamid decided to sell his car.									
	(i)	Explain why the percentage reduction at the end of three years is not 15% of \$120 500.								
			[1]							
	(ii)	Calculate the value of his car at the end of 2023. Give your answer correct to the nearest dollar.								
			[2]							
		Answer \$	[3]							

3	(a)	A =	$\{x : x \text{ is an integer}, 2 \le x \le 14\}$ $\{x : x \text{ is a prime number}\}$ $\{x : x \text{ is a multiple of 3}\}$		
		(i)	List the elements in $(A \cup B)$ '.		
				Answer	<i></i> [1]
		(ii)	List the elements in $A \cap B$.		
		(iii)	Given that $C \subset A$, $n(C) = 3$ and $B \cap$		t the elements of a possible set C .
				Answer	[1]

3 (b) (i) The diagram shows a cone P of height 24 cm.

The volume of the liquid in the cone is half the volume of the cone. Calculate the depth, d cm, of the liquid.

Answer	 cm	[2]
21100 1101		L- J

(ii) The volume of cone P is v cm³. Cone T has radius which is double that of the cone P and its height is one-third that of the cone P.

Express the volume of cone T in terms of v.

Answer	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	cm^3	[2]
111101101			

9

(c)

A, B and C are points on the circumference of a circle. Angle CAB = angle CBA. DA and DB are tangents to the circle from the point D.

Prove that triangle ACD and triangle BCD are congruent.

Answer

4

The diagram shows the cross section of a cylinder, centre O, radius r, lying on its side. The cylinder contains water to a depth of 18 cm. The width, AB, of the surface of the water is 24 cm.

(a) Use algebraic method to show that r = 13 cm.

Answer

[2]

(b) Show that angle AOB is 134.76° correct to 2 decimal places.

Answer

(c)	Hence	calculate	the	area	of the	shaded	segment
٦	~,	1101100	onioniate	LILO	ur ou	OT HIE	mucu	DOMINOUS.

Answer		cm ²	[4]
--------	--	-----------------	-----

(d) The length of the cylinder is 40 cm.The cylinder is turned so that it stands on one of its circular ends.In this position, the depth of the water is h cm.

Find the value of h.

Answer
$$h = \dots$$
 [2] [Turn over

5	(a)	A is t	the point $(2,3)$ and B is the point $(3,-5)$	i).	
		(i)	Find the equation of the line AB.		
				Answer	 [2]
		(ii)	Find the length of AB .		
				Answer	 [2]
		(iii)	$\overrightarrow{BC} = \begin{pmatrix} -4\\3 \end{pmatrix}.$		
			Find the coordinates of point C.		

(b)

OABC is a parallelogram.

 $\overrightarrow{OA} = 2\mathbf{a}$ and $\overrightarrow{OC} = 3\mathbf{c}$.

M is the midpoint of BC.

T is the point on OB such that OT: TB = 2:1.

(i) Find \overrightarrow{OB} in terms of a and c.

Answer
$$\overrightarrow{OB} = \dots$$
 [1]

(ii) Find \overrightarrow{OT} in terms of a and c.

Answer
$$\overline{OT} = \dots$$
 [1]

(iii) Determine if the points A, T and M lie on a straight line.

Answer

.....

	14	
		[3]
6	37.5 m A 63° B	
	A 60 m	
	The diagram shows three points, A , B and L on a horizontal field. $AL = 37.5$ m, $AB = 60$ m and angle $LAB = 63^{\circ}$.	

Calculate LB.

Answer m [3]

(b) Calculate angle LBA.

(c)	T is top of a vertical tree at L . The angle of elevation of the top of the tree seen from A is 10° . Find the height of the tree.
	<i>Answer</i> m [2]
(d)	A bird is hovering at a height of 3 m above the field. It spots a prey on the ground at angle of depression of 60°. Calculate the distance that the bird must fly to catch its prey.
	Answer m [2]

[3]

7 (a) Complete the table of values for $y = 2x + \frac{9}{x} - 11$. Values are given to 1 decimal place where appropriate.

x	0.5	1	1.5	2	2.5	3	4	5	
y	8	0	-2	-2.5	-2.4	-2	-0.8]
<u> </u>	<u>. </u>								[1]

(b) On the grid, draw the graph of $y = 2x + \frac{9}{x} - 11$ for $0 \le x \le 5$.

(c) By drawing a tangent, find the gradient of the curve at (1.5, -2).

		Answer	[2]
(d)	(i)	On the same axes, draw the graph of the straight line $2y = 12 - 3x$.	[1]
	(ii)	Write down the x-coordinates of the points where the graphs meet.	
	(iii)	Answer $x = \dots$ or	[2]
		Answer A =	
			f a z
		$B = \dots$	[2]

8 (a) The cumulative frequency graph shows the distribution of times of the first 120 runners to finish a marathon in 2022.

This box-and-whisker plot represents the distribution of the times of the first 120 runners to finish the marathon in 2023.

(i) Use the two diagrams to complete this table for the two marathons.

Year	Lower quartile	Median	Upper quartile	Interquartile range
2022		154.5		
2023	145		155	10

[3]

(ii) Simon says that the runners in 2022 were quicker on average. Do you agree? Give a reason for your answer.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[1]

(iii) Complete the frequency table below for the runners in 2023.

Time (minutes)	Frequency
$135 < t \le 140$	4
$140 < t \le 145$	
$145 < t \le 150$	32
150 < <i>t</i> ≤155	28
$155 < t \le 160$	
$160 < t \le 165$	9

[2]

(b)	Die 2	A has 2 B has 4	wo dice are use blue faces and blue faces and e are thrown to	l 4 yellow face l 2 pink faces.	S.		
	(i)	Find t	the probability	that			
		(a)	both dice sho	ow a blue face	on top.		
					Answer		[1]
		(b)	just one die	shows a blue f	ace on top.		
					Answer		[2]
	(ii)	If jus He al Calcı	so wins a prize	e, the player the if both show	hrows both dice blue on the sec	e again. cond throw. rize on either the first throw or	
					Answer		[2]

9 Electricity tariffs are regulated by the Energy Market Authority (EMA) of Singapore and revised quarterly to reflect the actual cost of electricity.
The cost of electricity per kilowatt(kWh) is known as the electricity tariff rate, which is revised every quarter by SP power.

Electricity Tariff

^{*} Price before GST.

Mr Faizal's average electricity consumption in January to March 2024

Month	Jan 24	Feb 24	Mar 24
Electricity consumption (kWh)	727	682	769

(a) Show that Mr Faizal paid \$217 on average per month for his family consumption from January to March 2024.

Mr Faizal stays in a terrace house in the east of Singapore. He is considering installing solar panel at his home. He wants to know if the cost of installing the solar panel can offset the cost of his electricity bill. He did some research and gets a quotation from a company that installs solar panel. Based on his house type, he is recommended to use the 60-cells solar panel.

Source: https://www.novergysolar.com/solar-panels-brief-guide-selecting-right-one/

Information for installation of solar panels

Dimensions of roof area for installation	9 m x 4 m
Cost of installing every 10 solar panels	\$5950
Average amount of electricity produced by 1 solar panel	19 kWh per month
Maintenance fee per year	\$500
Lifespan of solar panels	20 years

(b) Calculate the maximum number of solar panels that can be installed on the roof of Mr Faizal's house.

Answer

Answer[2]

State one assumption you have used.	
Acquimition	
	Assumption:

END OF PAPER

[Turn over

24

BLANK PAGE

2024 GSS Sec 4E5N Mathematics Preliminary Examination Paper 1

Item	Worked Solutions	Marks Awarded	Remarks
1(a)	9.52 (3 s.f.)	B1	Accept more exact answers.
1(b)	\$24.49	B1	
2(a)	$9^{12} = 27^{x}$ $(3^{2})^{12} = (3^{3})^{x}$ $3^{24} = 3^{3x}$	M1	Express all in powers
	24 = 3x x = 8	A 1	of 3.
2(b)	$6500 = 5000 \left(1 + \frac{p}{100}\right)^4$	M1	
	$\left(1 + \frac{p}{100}\right) = \sqrt[4]{\frac{6500}{5000}}$		
	$\frac{p}{100} = 0.06778997$ $p = 6.78\% (3 \text{ s.f.})$	A 1	
3(a)	Brand C's and Brand D's sectors add up to 60% but is shown as half of the pie chart (which should be 50%). OR The total add up to 110% instead of 100%.	A1 B1	
3(b)	Recalculate/Check the percentages for Brand C and Brand D so that the sectors of the pie chart should be proportional to the actual percentage.	B1	Accept "Recalculate all values to get the correct percentages."
4	(2x+1)(3x-2)	B2	M1 for multiplication frame or B1 for each correct factor
5	$\frac{2}{x-2} - \frac{3}{2x+1}$ $= \frac{2(2x+1) - 3(x-2)}{(x-2)(2x+1)}$ $= \frac{4x+2-3x+6}{(x-2)(2x+1)}$	M1	M1 for combining fractions.
6	$=\frac{x+8}{(x-2)(2x+1)}$ 12,13,14, 16, 16, 19	A1 B2	B1 for 14, 16, 16 in
	, , , , , , , , , , , , , , , , , , , ,		correct places. B1 for 12, 13, 19 in

			correct places.
7	$\frac{2x-3}{4} \le \frac{5-x}{5}$ $5(2x-3) \le 4(5-x)$ $10x-15 \le 20-4x$ $14x \le 35$	M1	M1 for multiplying 20 on both sides
	$x \le \frac{35}{14}$ $x \le 2.5$	A1	
8(a)	$\frac{\pi}{180} \times 40 = \frac{2}{9} \pi \text{ rad}$	B1	B1 for correct answer
8(b)	23 km/h = $\frac{23 \times 1000}{60 \times 60} = \frac{115}{18} = 6\frac{7}{18} = 6.39$ m/s	B1	B1 for correct answer
9	Total surface area = $\frac{1}{2} \times 4\pi (6)^2 + \pi (6)^2$ = $72\pi + 36\pi$ = 108π = 339 cm ² (3 s.f.)	M1	M1 for hemisphere + circle
10	$2c + b = \frac{b - c}{a}$ $2ac + ab = b - c$	MI	M1 for cross-multiplication.
	$ab-b = -2ac-c$ $b(a-1) = -(2ac+c)$ $b = \frac{-(2ac+c)}{a-1}$ $2ac+c$	M1	M1 for isolating b. Accept answers with – sign in numerator.
11	$b = \frac{2ac + c}{1 - a}$ $16^2 + 63^2 = 4225 = 65^2$ By the converse of Pythagoras' Theorem, triangle ABC is a right-angled triangle. A, B and	M1 A1	M1 for showing P.T. A1 for P.T. A1 for circle property
	C are also points on a circle by angle in a semicircle property. Yes, A, B and C lie on the circumference of a circle.	A1	
12(a)	$ab^2(ab^2-1)$	B1	
12(b)	$(3x+2)^2 + 4x(2-x) = 9x^2 + 12x + 4 + 8x - 4x^2$	M2 A1	M1 for $9x^2 + 12x + 4$ M1 for $8x - 4x^2$
13(a)	$= 5x^{2} + 20x + 4$ Area of hexagon = $6 \times \frac{1}{2} \times 7 \times 7 \times \sin(60^{\circ})$	M1	

	$= 127.3057344 \text{ cm}^2$		
	$= 127.3037344 \text{ cm}$ $= 127 \text{ cm}^2 (3 \text{ s.f.})$	Al	
	127 cm (5 s.i.)	AI	
13(b)	(15-2)×180	 	
	$\frac{(15-2)\times180}{15} = 156^{\circ}$	B1	
14(a)	original $y = k\sqrt[3]{x}$		
	$\text{new } y = k\sqrt[3]{8x} = 2k\sqrt[3]{x}$	M1	
	Percentage change = $\frac{2k\sqrt[3]{x} - k\sqrt[3]{x}}{k\sqrt[3]{x}} \times 100$	***	
	=100%	A1	·
14(b)	6 men takes 50 hours to paint a mural.		
	4 men takes $\frac{6}{4} \times 50 = 75$ hours to paint the same		
	7	M1	
	mural.	A1	
15(a)	$P(yellow) = \frac{1 - 0.2 - 0.1}{2} = 0.35 \text{ (shown)}$	B1	
15(b)	Total number of counters		
	$=\frac{1}{0.35}\times14$	•	
	0.35	M1	
	= 40	A1	
15(c)	$P(yellow) = \frac{14}{40-3} = \frac{14}{37}$	B1	
16	Reflex Angle $AOC = 100 \times 2 = 200^{\circ}$	M1	M1 awarded with
	(Angle at centre is twice the angle at circumference)	M 1	correct reasoning
	Obtuse angle $AOC = 360^{\circ} - 200 = 160^{\circ}$	M1	
	(Angles at a point) Angle $OAC = \frac{180^{\circ} - 160^{\circ}}{2} = 10^{\circ}$ (Angles of an isosceles triangle OAC)	A1	
17(-)	214(-1) 4 2		
17(a) 17(b)	2+4(n-1) = 4n-2 $4n-2 = 82$	B1	
1/(0)	4n - 2 = 82 $4n = 84$		
	n = 21	B1	
17(c)	If $4n-2=360$, $n=90.5$ which is not an integer,	1	
<u> </u>	so 360 is not a term in the sequence.	B1	
17(d)	8th term = $[-4(8)^2 + 54(8)] - [-4(7)^2 + 54(7)]$	M1	M1 for subtraction
	= 176 - 182],,	
	=-6	A1	

18(a)	$x^2 - 4x + 5 = (x - 2)^2 + 1$	·	
10(4)	a=2	B1	
	b=1	B1	
18(b)	x=2	B1	
18(c)			
	$y = x^2 - 4x + 5$	B1	Correct shape
	5	В1	Correct turning point
	$\begin{array}{c c} & & & \\ \hline & & \\ \hline & & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline \\ \hline$	ві	Correct y-intercept
10	5	B1	Forming correct
19	5x + 2y = 111(2)	B1	equations.
	x + y = 30(1)	D 1	oquations.
	$(2)-2\times(1)$:		
	3x = 51	M1	Solving.
	x = 17		
	Sub into (1):		
	y = 13		
	Amount of money Siti has = $17 \times 5 = 85	A1	
20(a)	7.75	B1	
20(b)	4.18 (3 s.f.)	B1	
20(c)	The mean would be increased by 3.	B1	
20(0)	The standard deviation will remain the same.	B1	
21(a)	$2^2 \times 5^3 \times 11$	B1	
21(b)	p=2	B1	
21(0)	q = 11	B1	
21(c)	LCM of 50, 60 and 75 = 300 min = 5 hours	M1	M1 for LCM
2.(0)	They will meet again at 11 am.	A1	
22(a)	Bearing of B from A		
()	= 180 + 040	M1	
	= 220°	Al	
22(b)	Bearing of C from A		
	= 180 - (65 - 040)	M1	
	= 155°	Al	

23(a)	(1100 1000 1200)	1	
		B1	
	(1400 1200 1300)		
23(b)	(110)	İ	
	80		
22()		B1	
23(c)	$(1100 \ 1000 \ 1200)$ (110)		
	$ \begin{bmatrix} (1100 & 1000 & 1200) \\ 1400 & 1200 & 1300 \end{bmatrix} \begin{bmatrix} 110 \\ 80 \\ \end{bmatrix} $	M1	
	$ \left(\begin{array}{cccc} 1100 & 1000 & 1200 \\ 1400 & 1200 & 1300 \end{array}\right) \left(\begin{array}{c} 80 \\ x \end{array}\right) $		
	$= \begin{pmatrix} 201000 + 1200x \\ 250000 + 1300x \end{pmatrix}$		
	(250000+1300x)	A1	
23(d)	The elements represent the amount of ticket		
	sales for each day (Saturday, Sunday).	B1	
23(e)	201000 + 1200x + 250000 + 1300x = 688500	MI	
	2500x = 323000		
	2500x = 237500		
	x = 95	A1	
24(a)	Area of triangle $ABC = 0.5 \times 4 \times 7$		** <u>** </u>
	= 14 unit ²	B1	ļ
24(b)	(6, 6)	B1	
24(c)	Area of parallelogram = $14 \times 2 = 28 \text{ unit}^2$	B1	
24(d)	Angle $BAC = \tan^{-1}\left(\frac{4}{8}\right)$		
	= 26.6° (1 d.p.)	B1	
24(e)	undefined	B1	
24(f)	1		Using cosine rule to get
	$-\frac{1}{p}$	B1	$n^2 - 31$
	r 		$\frac{p^2-31}{14p}$ also accepted.
			

25(a)		B1	Bisector constructed accurately with construction arcs
25(b)	A	B1	Perpendicular bisector constructed accurately with construction arcs on both sides of AB
25(-)	В	B1	Correct region shaded
25(c) 25(d)	D	B1	Correct position of T

2024 Preliminary Examination Mathematics (Syllabus 4052/2)

1(a)	$\frac{5a^3}{6b} \div \frac{2ab}{4a^2b}$ $= \frac{5a^3}{6b} \times \frac{4a^2b}{2ab}$ $= \frac{5a^4}{3b}$	B1	
(b)	$\frac{x}{8} = \frac{50}{x}$ $x^2 = 400$ $x = \pm 20$	B2	
(c)	$\frac{4v^2 - 1}{2pv + p - 10v - 5}$ $= \frac{(2v - 1)(2v + 1)}{(p - 5)(2v + 1)}$ $= \frac{2v - 1}{p - 5}$		$(2\nu-1)(2\nu+1)$ $(p-5)(2\nu+1)$
(d)	$2x^{2} = 3(3x-1)$ $2x^{2} = 9x-3$ $2x^{2}-9x+3=0$ $x = \frac{-(-9) \pm \sqrt{(-9)^{2} - 4(2)(3)}}{2(2)}$ $x = 4.14 \text{ or } 0.36$	M1 M2 A1	Quadratic eqn formed M1 for b ² – 4ac correct

2(a)	$3 \times 3.5\% = 10.5\%$ $10.5\% - \$10374$ $100\% - \frac{10374}{10.5} \times 100$ $= \$98800$	M1	OR I = P x r% x T
(b)	Total petrol consumption $= \frac{16992}{100} \times 6.7$ $= 1138.464 l$ Total amount paid $= 1138.464 \times \$2.72$ $= \$3096.62$	M1	
(c)(i)	The decreased of 5% is compounded. The value of the car (base) for each year is lower than the previous year.	B1	
(c)(ii)	Year 0 120500 Year 1 0.95×120500 = \$114 475 Year 2 0.95 x 114 475 = \$108 751.25 Year 3 0.95 x 108 751.25 = \$103 313.69 Ans \$103 314 (nearest dollars)	M1 M1 A1	Year 1 Year 2

- L L L L L L L L L L L L L L L L L L L		
3(a)(i)	$A = \{2, 3, 5, 7, 11, 13\}$	
	$B = \{3, 6, 9, 12\}$	
	$(A \cup B)' = \{4, 8, 10, 14\}$	B1
	, , , , ,	
(a)(ii)	$(A \cap B) = \{3\}$	B1
(a)(iii)	Any subset with 3 elements from {2,5,7,11,13}	BI
3(b)(i)		M1
	$\left(\frac{d_1}{24}\right)^3 = \frac{1}{2}$	1,411
	(24) 2	
	d = 19.0	A1
		711
(b)(ii)	Let r be the radius of cone P .	
	Tr. 1 200 0 2 3	
	Volume of cone P , $v = \frac{1}{3}\pi r^2(24) = 8\pi r^2 \text{cm}^3$	
	Volume of cone T	
		M1
	$=\frac{1}{3}\times\pi(2r)^2(\frac{1}{3}\times24)$	
	422	
	$==\frac{4}{3}\times8\pi r^2$	
	4	A1
	$=\frac{4}{2}v$ cm ³	
	3	
(c)	CD is common.	
(*)	DA = DB (tangent from an external point)	B1
	(Barn war avenue, bowe)	
	Since, angle CAB = angle CBA	
	⇒ triangle CAB is isosceles,	
	Hence, $AC = BC$.	B1
	,	
	Therefore, triangle ACD and triangle BCD are congruent	B1
	(SSS).	
	<u>`</u>	
		

4(a)	$(18-r)^2 + 12^2 = r^2$	M1	
	$324 - 36r + r^2 + 144 = r^2$		
	36r = 468		
	r = 13cm	Al	
(b)	Angle AOB	M1	Or ½ absinC
	$= 2 \times \tan^{-1} \left(\frac{12}{5} \right)$ = 134.76°	A1	
(c)	Reflex angle AOB =		
(0)	360° -134.76° = 225.24°	Ml	R
	Area of major sector = $\frac{225.24}{360} \times \pi (13)^2$	Al	
	Area of triangle AOB = $\frac{1}{2} \times 13^2 \times \sin 134.76$	M1	
	Area of segment		
	$= \frac{225.24}{360} \times \pi (13)^2 + \frac{1}{2} \times 13^2 \times \sin 134.76$		
	360 2 = 392.18 = 392 cm ²	A1	
(d)	Volume of water = $392.18 \times 40 = 15687.2 \text{ cm}^3$	M1	
	$h = \frac{15687.2}{\pi (13)^2}$		
	$h = 29.547 \mathrm{cm}$		
	$h = 29.5 \mathrm{cm}$	A1	

C1:1 0	13.55	1
Į.	MI	
$\sqrt{(2-3)^2+(3+5)^2}$	MI	
= 8.06 units	A1	
OR		
$\overline{AB} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -8 \end{pmatrix}$	M1	
$ \overrightarrow{AB} = \sqrt{1^2 + (-8)^2} = 8.06$	A1	
$\overrightarrow{OC} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} + \begin{pmatrix} -4 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$	M1	
C(-1,-2)	Al	
$\overrightarrow{OB} = 2\mathbf{a} + 3\mathbf{c}$	B1	
$\overline{OT} = \frac{2}{3}(3\mathbf{c} + 2\mathbf{a})$	B1	
$\overline{AT} = -2a + \frac{2}{3}(3\mathbf{c} + 2\mathbf{a})$		
	M1	\overrightarrow{AT} or \overrightarrow{AM} or \overrightarrow{TM}
$\overline{AT} = \frac{2}{3}(3\mathbf{c} - \mathbf{a})$		
$\overrightarrow{AM} = 3\mathbf{c} - \mathbf{a}$		
$\overline{AT} = \frac{2}{3} \overline{AM}$	M1	$\overrightarrow{AT} = k\overrightarrow{AM}$
AT is parallel to AM and A is common. Therefore A , T and M lies on a straight line.	A1	
	OR $\overline{AB} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -8 \end{pmatrix}$ $ \overline{AB} = \sqrt{1^2 + (-8)^2} = 8.06$ $\overline{OC} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} + \begin{pmatrix} -4 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ $C(-1, -2)$ $\overline{OB} = 2\mathbf{a} + 3\mathbf{c}$ $\overline{OT} = \frac{2}{3}(3\mathbf{c} + 2\mathbf{a})$ $\overline{AT} = -2\mathbf{a} + \frac{2}{3}(3\mathbf{c} + 2\mathbf{a})$ $\overline{AT} = 2\mathbf{c} - \frac{2}{3}\mathbf{a}$ $\overline{AT} = \frac{2}{3}(3\mathbf{c} - \mathbf{a})$ $\overline{AM} = 3\mathbf{c} - \mathbf{a}$ $\overline{AT} = \frac{2}{3}\overline{AM}$ AT is parallel to AM and A is common.	$ 3 = -8(2) + c c = 19 y = -8x + 19 $ A1 $ \sqrt{(2-3)^2 + (3+5)^2} = 8.06 \text{ M1} $ OR $ \overline{AB} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -8 \end{pmatrix} $ $ \overline{AB} = \sqrt{1^2 + (-8)^2} = 8.06 $ A1 $ \overline{OC} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} + \begin{pmatrix} -4 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} $ M1 $ C(-1, -2) $ A1 $ \overline{OB} = 2\mathbf{a} + 3\mathbf{c} $ B1 $ \overline{OT} = \frac{2}{3}(3\mathbf{c} + 2\mathbf{a}) $ B1 $ \overline{AT} = -2a + \frac{2}{3}(3\mathbf{c} + 2\mathbf{a}) $ B1 $ \overline{AT} = 2\mathbf{c} - \frac{2}{3}\mathbf{a} $ M1 $ \overline{AT} = \frac{2}{3}(3\mathbf{c} - \mathbf{a}) $ $ \overline{AM} = 3\mathbf{c} - \mathbf{a} $ $ \overline{AT} = \frac{2}{3}\overline{AM} $ M1 $ AT \text{ is parallel to } AM \text{ and } A \text{ is common.} $ A1

6(a)	$LB^2 = 60^2 + 37.5^2 - 2(60)(37.5)\cos 63^\circ$	M2	
	LB = 54.436	A1	
	<i>LB</i> = 54.4m		
(b)	$\frac{\sin \angle LBA}{37.5} = \frac{\sin 63}{54.436}$ \(\angle LBA = 37.865\)	M1	
	∠ <i>LBA</i> = 37.9°	A1	
(c)	$\frac{LT}{37.5} = \tan 10^{\circ}$	M1	
<u>{</u>	LT = 6.6123m		
	LT = 6.61m	A1	
(d)	$\frac{3}{d} = \sin 60^{\circ}$	M1	
	$d = \frac{3}{\sin 60}$		
	d = 3.46m	A1	

(b) 8 P2 Plot all pocorrectly P1 Plot at least points consonated at the	ast 6
P1 Correctly Plot at lea points consolid Smooth c	ast 6
P1 Plot at lea points con Smooth c	ast 6
C1 points con Smooth c	
C1 Smooth c	rrectiv
2	
(c) Tangent drawn correctly M1	
(d)(i) Straight line passing through (0,6) and (4,0) B1 (d)(ii) 0.6±0.05, B1	
(4)(1) 0.0±0.05, 4.2±0.05	
	İ
18 22 12 2	
$4x + \frac{18}{x} - 22 = 12 - 3x$	
$4x^2 + 18 - 22x - 12x + 3x^2$	
$7x^2 - 34x + 18 = 0$ M1	
A = -34	
B=18 A1	

8(a)	20	ear 022 023	quart 150.	ile	Median	Upper quartile 157	Interquartile range 6.5	M1 A1 B1	LQ or UQ IQR Median
(b)	No, I do The mea mean tir	an tir	ne for		unners in	2023 is lov	ver than the	B1	
(c)	Time (135 < 140 < 145 <	< t ≤ 1 < t ≤ 1	140 145	Fre	4 26 32			B1	
	150 < 155 < 160 <	< t ≤ !	160		28 21 9			B1	
8(b)(i)(a)	$\frac{1}{3} \times \frac{2}{3} =$	$\frac{2}{9}$						B1	
(b)(i)(b)		$\left(\frac{2}{3}\right)$	$\times \frac{2}{3}$					M1 A1	
(b)(ii)	$\frac{2}{9} + \left(\frac{5}{9}\right)^{2}$ $= \frac{28}{81}$	$\times \frac{2}{9}$						M1	

10(a)	Amount paid before GST		
	$=\frac{(737+692+749)}{3}\times0.2989$	MI	
	$=726\times0.2989$	A1	
	=\$217		<u></u>
(b)	9÷1.65≈5	M1	
	$4 \div 1 = 4$ $5 \times 4 = 20$	A 1	
(c)	Average amount of electricity produced	P1	
	$= 20 \times 19 = 380 \text{ kWh}$	1 1	
	Average cost per month after solar energy savings = (726-380) x \$0.2989	C1	
	=\$103.42		
	Average cost of installing & maintenance of solar panel per month	I1	
	$= (2 \times \$5950 + 20 \times \$500) \div (20 \times 12)$		
	=\$91.25		
	Total average amount paid per month after installation =\$103.42 + \$91.25	T1	
	=\$194.67 (< \$217)		
	Since the average amount paid by Mr Faizal after installing the solar panels is less than what he is currently paying, he should proceed with the installation.	A1	Conclusion
	Assumption:	Al	Either one
	The average electricity consumption remains the same,	Ai	Bittle one
	The price of tariff did not increase.		

Method 2 (Total cost based on 20 years)

(c)	Average amount of electricity produced = 20 x 19 = 380 kWh	P1
	Cost for 20 years before installation = \$217x20x12= \$52080	C1
	Cost of installation & maintenance = $(2 \times \$5950 + 20 \times \$500)$	I1
	=\$21900	
	Total cost for 20 years after installation =(726-380) x \$0.2989x12x20 +21900	T1
	= 46720.66 < \$52080	
	Since the total amount paid by Mr Faizal after installing the solar panels is less than what he is currently paying, he should proceed with the installation.	A1