

1	
_	
	ΛΛ
	90

CANDIDATE NAME	
CLASS	INDEX NUMBER
MATHEMATICS	4052/01
Paper 1	19 August 2024
	2 hours 15 minutes
Candidates answer on the Question Paper.	

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The total of the marks for this paper is 90.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

For Exami	ner's Use
Category	Question
Accuracy	
Brackets	
Fractions	
Units	
Others	
Marks Deducted	

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions.

Calculate	$\frac{13.5+14.04}{-0.31+\sqrt[3]{15.625}},$	giving your answer	correct to one significant figu	re.
	Calculate	Calculate $\frac{13.5 + 14.04}{-0.31 + \sqrt[3]{15.625}}$	Calculate $\frac{13.5+14.04}{-0.31+\sqrt[3]{15.625}}$, giving your answer	Calculate $\frac{13.5+14.04}{-0.31+\sqrt[3]{15.625}}$, giving your answer correct to one significant figure

			Answer	 [1]
2	Pau The	x buys a shirt at a price of £14.75. I buys a shirt at a price of \$21.99. exchange rate is \$1 = £0.73. culate how much more Paul pays than Ale	ex.	
			Answer	 [2]
3	(a)	Simplify $5(3^3 \times 5^4)^2$. Give your answer in the form $3^a \times 5^b$.		
	(b)	$2^{100} - 4 \times 2^{97} = 2^k$	Answer	 [1]
		Use laws of indices to find the value of Show your working.	k.	

Answer
$$k = \dots$$
 [2]

4	(a)	A number p has exactly 12 factors. Two of the factors are 4 and 15. Find the value of p .					
	(b)	(i)	Answer $p = \dots$ [Express 525 as the product of its prime factors.	[1]			
		(ii)	Answer	[1]			
			Answer $x = \dots, \dots$	[2]			

5 Jessica invests \$4540 at a rate of r % per year compound interest. At the end of 10 years, she has earned \$1328.54 in interest. Calculate the value of r.

6 Ayden claims that a regular polygon can be formed with the ratio					
	interior angle to exterior angle = 5: 4.				
	Explain why Ayden is wrong.				
	•••••••••••••••••••••••••••••••••••••••				
	[2]				
7	The expression $x^2 + ax + 17$ can be written in the form $(x-6)^2 + b$. (a) Find the value of a and of b.				
	Answer $a = \dots$				
	$b = \dots \qquad [2]$				
	(b) Explain why when $x = 6$, the expression $x^2 + ax + 17$ has its minimum value.				
	[1]				
8	A shopkeeper makes a loss of 24% when he sells an article for \$136. Calculate the selling price of the article in order for the shopkeeper to make a profit of 40%.				
	Answer \$[2]				

[Turn over

[3]

9	A bag contains some yellow and blue balls. The ratio of the yellow balls to the blue balls is 1:4. 5 yellow balls are removed from the bag and 10 blue balls are added to the bag. The new ratio of yellow balls to blue balls is 1:6. Find the original number of yellow balls in the bag.

10 It is given P(-4,2), Q(2,10) and R(-4,-5).

(a) Write down the equation of the line PR.

Answer[1]

(b) The line 5y+10=mx has the same gradient as QR. Find the value of m.

Answer $m = \dots [2]$

					7	r			
11	Each	n term in this sequenc	e is fou	nd by	subtra	ecting	the sa	ame number from the previous terr	n.
			78,	а,	<i>b</i> ,	c,	42,		
	(a)	Find the values of a	, <i>b</i> and	<i>c</i> .					
						Ans	wer	<i>a</i> =	
						•		<i>b</i> =	
								c =	[2]
	(b)	Write down an expre	ession,	in ter	ms of <i>i</i>	n for tl	he <i>n</i> th	ı term.	
						Ansı	ver		[1]
	(c)	Write an inequality	in <i>n</i> and	l solv	e it to f	find th	e firs	t negative term of this sequence.	
						Ansv	ver		[2]

12 (a) Write down the set represented by the shaded region.

Answer[1]

[Turn over

12	(b)	$\varepsilon = \{ \text{integer } x : 1 \le x < 15 \}$
		$A = \{ perfect squares \}$
		$B = \{\text{prime numbers}\}\$

(i) Find $n(A \cup B)$	(i)	Find $n(A \cup B)'$
------------------------	-----	---------------------

Answer		[1]
Answer	*************************	L^J

(ii) List the elements in $A \cap B'$.

(iii) Given that $C \subset (A \cap B')$ and n(C) > 0, list the elements in one possible set of C.

Sketch the graph of y = (4 - x)(2 + x). State clearly the coordinates of the points where the graph crosses the axes and the turning point on the curve. [3]

14 The diagram shows the marks obtained, out of 100, by 160 local students in a Mathematics test. The cumulative frequency curve shows the distribution of the marks.

(a) Use	the c	urve t	o find
---------	-------	--------	--------

(i)	the	median	mark,
------------	-----	--------	-------

Answer		rt	٦
1113 WC1	****************************	1 2	ш

(ii) the interquartile range of the distribution.

Answer		[2	1	ı
ansyvei	**************************	12		ı

(b) A group of 160 foreign students took the same test and had the same median as the group of local students but a higher interquartile range.

Describe how the cumulative frequency curve for the group of foreign students may differ from the curve for the group of local students.

•••••••••••••••••••••••••••••••••••••••		
	[1]	

	П	,			
15	Write as a single fraction in its simplest form	$\frac{x}{x+9}$	$\frac{4x+}{x^2-8}$	3 31	
		Answ	er .		[2]
16	(a) Expand and simplify $(2x+3y)(7x-5y)$	y).	_		
		Answ	ver .		[2]
	(b) Factorise completely. (i) $x^3y^3 - xy^3$				
	(ii) $5ax - 3ay - 10cx + 6cy$	Answ	ver		[2]

Answer[2]

Destin folded a square paper napkin, ABCD, along the lines WX, XY, YZ and WZ as shown. He ensured that AW = BX = CY = DZ.

Prove that triangle AWZ is congruent to triangle BXW.

•••••••••••••••••••••••••••••••••••••••	[2]

18 (a) y is directly proportional to the cube root of (x + 1).

It is given that x = 7 when y = 1. Find the value of y when x = 124.

Answer
$$y =$$
 [2]

18	(b)	F is inversely proportional to the square of d .	
		Explain what happens to F when d is halved.	
		***************************************	[2]

19 The diagram below shows the speed-time graph of part of a car's journey.

Calculate

(a) the deceleration of the car in the first 16 seconds,

Answer m/s^2 [1]

(b) the average speed of the car during the 24 seconds.

Answerm/s [2]

20	The following table shows the amount of flour, butter and sugar in grams needed in making a
	pandan cake and a marble cake.

		Butter	Sugar
Pandan Cake	250 g	250 g	100 g
Marble Cake	400 g	200 g	90 g

(a)	The amount of ingredients used in making a pandan cake and a marble cake can be
	represented by the matrix

$$\mathbf{A} = \begin{pmatrix} 250 & 250 & 100 \\ 400 & 200 & 90 \end{pmatrix}.$$

(i) Evaluate **AB** where
$$\mathbf{B} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
.

	$Answer \mathbf{AB} =$	[2]
(ii)	Explain what the elements in AB represent.	

The cost of 100 g of flour is 0.20, 100 g of butter is x dollars and 100 g of sugar is **(b)** \$0.30.

Represent this cost in a 3×1 column matrix **D**.

Answer
$$D = [1]$$

Given that the cost of baking a pandan cake is 4.25, calculate the value of x. (c)

Answer
$$x = \dots$$
 [1]

[Turn over

[1]

21 A plot of land ABCD is given below.

A playground E, inside the quadrilateral ABCD, is equidistant from DA and CD and closer to B than to A.

By construction, using compass and ruler, mark and label a possible position of the playground E. [3]

22 The diagram below shows a solid circular cone and a solid sphere.

The cone has radius 12x cm and height 17x cm.

The sphere has radius rx cm.

The cone has the same total surface area as the sphere.

Calculate the value for r.

Answer
$$r = \dots$$
 [4]

The diagram shows the symmetrical cross-section of a canal containing water. The angle between the base and each side of the canal is 95°.

The width of the base is 90 cm, and the depth of the water is 2.1 m.

The canal is 100 m long.

(a) Calculate the volume of water in the canal.

3 [[4]
ì	ı ³

(b) Water is pumped out of the canal at a rate of 0.3 m³ per minute.

Calculate the time taken to empty the canal completely.

Give your answer in hours and minutes, correct to the nearest minute.

hoursminutes	[1]
	hoursminutes

24 The diagram shows triangle *OPT*.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OT} = \mathbf{m}$.
 $OK : KT = 2 : 1$ and $TL : LP = 2 : 1$.

- (a) Find, in terms of m and p, in its simplest form
 - (i) \overline{PL} ,

Answer		[1]
--------	--	-----

(ii) \overrightarrow{KL} .

24 (b) KL is extended to the point M.

$$\overrightarrow{KM} = -\frac{2}{3}\mathbf{m} + \frac{4}{3}\mathbf{p}.$$

Show that M lies on OP extended.

[3]

Answer

(c) Find the ratio of area of triangle KTL: area of triangle OTP.

Answer[2]

25 The diagram shows the route of the Vistarian Roadrun. The route is in the shape of a regular octagon, ABCDEFGH. B is due west of A and AB = 0.65 km.

North

(a) Find the bearing of H from A.

4nswer		[2]
--------	--	-----

(b) Calculate the distance of BH.

25 (c) Calculate the area of triangle BHG.

Answerkm² [2]

~End of Paper~

INDEX UMBER
<u> </u>
4052/02 20 August 2024
hours 15 minutes
2

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Gives answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 90.

For Examiner's Use		
Category	Question	
Accuracy		
Brackets		
Fractions		
Units		
Others		
Marks		
Deducted		

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 (a) Solve the inequality $-5 <$	$3r = 2 \times 13$

Answer		[2]
I I I DO TO CO	**** * * * * * * * * * * * * * * * * * *	(4)

(b) Solve these simultaneous equations.

$$\frac{1}{2}x+y=5$$

$$2x-3y=13$$

You must show your working.

1 (c)
$$p = \sqrt[3]{\frac{r+q}{4r-1}}$$

(i) Find p when r = 7 and q = -15.

Answer
$$p = \dots$$
 [1]

(ii) Rearrange the formula to make r the subject.

1 (d) Solve
$$\frac{15}{2x-1} = x+3$$
.

2 (a) The table shows the amount of 'Food Waste Output' and 'Food Waste Recycled' in Singapore from 2008 to 2010.

Year	2008	2009	2010
Food Waste Output (*Tonnes)	565 000	605 000	640 000
Food Waste Recycled (*Tonnes)	65 000	75 000	99 000

 $^{*1 \}text{ tonne} = 1000 \text{ kg}$

(i)	Write the total amount of Food Waste Output from 2008 to 2010 in standard
	form.

tonnes [1	
tonnes	3	s [1]

(ii) Given that the percentage increase in Food Waste Recycled from 2009 to 2010 is the same as the percentage increase from 2010 to 2011, calculate the amount of Food Waste Recycled in 2011.

(iii) Per capita food waste is defined as the amount of Food Waste Output generated by each person. Given that the population in 2008 is 4.84 million, calculate the per capital food waste in kilograms per day.

2	(a)	(iv)	It is given that						
			Food Waste Output = Food Waste Disposed + Food Waste Recycled						
			The recycling rate is given by the formula $Recycling Rate = \frac{Food Waste Recycled}{Food Waste Output}.$						
			In 2007, 509 000 tonnes of food waste was disposed, and the recycling rate was 8.6%. Calculate the Food Waste Output in 2007.						
			Answer tonnes [2]						
	(b)	A riv	er of length 612 m is represented by 9 cm on Map A.						
		(i)	The actual perimeter of a lake is 1700 m. Find the perimeter of the lake on Map A.						
		(ii)	Answer						
			Answer cm ² [2]						
			[Turn over						

- A piece of wire of length 120 cm is cut into two parts.

 One part of the wire is bent to form a square of side x cm.

 The remaining part of the wire is bent to form a circle with radius, r cm.
 - (a) Show that the radius of the circle, r is given by $\frac{60-2x}{\pi}$ cm.

 Answer

[2]

(b) If the area of the square is equal to the area of the circle, form an equation in x and show that it reduces to

$$(4-\pi)x^2 - 240x + 3600 = 0.$$

Answer

			,						
3	(c)	Solve the equation $(4-\pi)x^2-240x+3600=0$, giving your solutions correct to two decimal places.							
			Answer $x = \dots$ or \dots [4]						
	(d)	Explain why one of the solution	ns has to be rejected.						
		Anguar Point	haanvaa						

(d)	Explain why one of the solutions has to be rejected.							
	Answer	Rejectbecause.	•••					
	•••••	······································	<i>.</i> .					
	*****		• • • •					

4	(a)	The heights of 12 students from Group A were recorded. The results are shown in the stem-and-leaf diagram.
		15 0 2 16 1 2 4 6 8 17 1 1 3 4 18 0
		Key: 15 0 means 150 cm
		(i) Find the mean height.
		Answer
		(ii) Find the standard deviation of the heights.
		<i>Answer</i> cm [1]
		 (iii) The mean height of students from Group B is 168 cm and the standard deviation of heights is 9.5 cm. Make a comment comparing the averages and a comment comparing the distribution of the heights of students from Group A and Group B.
		1
		······································
		2
		······································
		·····

4	(b)	The table shows the subjects studied by a group of 40 students.
	• /	J

	Geography	History
Biology	9	12
Physics	8	11

	Biology	9	12		
	Physics	8	11		
(i)			dom from students wh t also studies History.	o study Biology.	
		A	nswer		[1]
(ii)	Two of the stu Geography. Fi Physics.	dents are chosen at ra nd the probability tha	ndom from students v t both students study l	vho study Biology but not	
		4	nswer		[0]
(iii)			andom from the whol	e group.	[2]

Anguar	[2]
Answer	 [2]

5 (a) Complete the table of values for $y = \frac{1}{4}x^3 + \frac{3}{2}x^2 - 4$.

x	-6	-5	-4	-3	-2	-1	0	1	2
y		2.25	4	2.75	0	-2.75	-4	-2.25	4

[1]

- (b) On the grid opposite, draw the graph of $y = \frac{1}{4}x^3 + \frac{3}{2}x^2 4$ for $-6 \le x \le 2$. [3]
- (c) The equation $\frac{1}{4}x^3 + \frac{3}{2}x^2 4 = k$ has no solution. Use your graph to find 2 possible integer values of k.

Answer
$$k =$$
 or [2]

(d) By drawing a suitable line on the grid, solve the equation $x^3 + 6x^2 - 2x - 16 = 0$.

Answer
$$x = \dots$$
 [3]

(e) By drawing a tangent, find the gradient of the curve at (1, -2.25).

6	(a)	The fi	rst four †	terms in a sequence of numbers are given below. $T_1 = 2^2$ $T_2 = 2^4$ $T_3 = 2^6$ $T_4 = 2^8$	
		(i)	Find a	$T_4 = Z$ n expression for T_n .	
		.,		Answer $T_n = \dots$	[1]
		(ii)		rst four terms in second sequence of numbers are given below. $R_1 = 4^4$ $R_2 = 4^7$ $R_3 = 4^{10}$ $R_4 = 4^{13}$ an expression for R_n .	
			ring	Answer $R_n = \dots$	[1]
		(iii)	The <i>n</i> (a)	th term of the third sequence of numbers is given by $Q_n = \frac{R_n}{T_n}$. Show that $Q_n = 2^{4n+2}$.	
				Answer	
					[1]
			(b)	Explain, with working, why 128 is not a term in the sequence Q_n .	
					,,,,,,

					[2]

6	(b)	A is t	he point $(4, 12)$ and B is the point $(10, 4)$.						
		(i)	Find $ \overrightarrow{AB} $.						
			Answer	[2]					
		(ii)	Given that $\overline{AC} = \frac{1}{2}\overline{BA}$, find the coordinates of C .						

Answer (...... ,) [2]

7

The diagram shows a section of a playground, ABC, bounded by three footpaths AB, AC and BC. AB = 30 m, BC = 38 m and angle $BAC = 95^{\circ}$.

(a) Find angle ABC.

Answer Angle
$$ABC = \dots$$
 [3]

7	(b)	A vertical pole of 2.5 m is placed at point A.
		Calculate the greatest angle of depression of a point along BC from the top of the
		vertical pole.

Answer[3]

(c) Ken runs from B to C at a speed of 4 m/s.
3 seconds after Ken left point B, Ali started to run from A towards C.
Determine the speed that Ali needs to run in order to reach point C at the same time as Ken.

Answer m/s [4]

[Turn over

8

In the diagram, A, B, C, and D are points on a circle, centre O. TA and TB are tangents to the circle at A and B respectively. Angle $COA = 92^{\circ}$ and angle $BTA = 38^{\circ}$.

(a) Find angle CDA.

Give reasons for each step of your working.

Answer Angle CDA = [2]

(b) Find angle *BCO*.

Give reasons for each step of your working.

8 (c) The radius of the circle is 7 cm.
Find the area enclosed by TA, TB and major arc BCDA.

Answer cm² [4]

A pottery artist in Singapore makes a clay sculpture consisting of two identical solid hemispheres and a solid cylinder as shown in the diagram below.

The hemisphere has a radius of 14 cm.

The cylinder has a radius of 2.5 cm and height of 6 cm.

The artist made another **geometrically similar** clay sculpture. The radius of the hemisphere of the second sculpture is 7 cm.

(a) Given that the clay used has a density of 1.5 g/cm³, show that the total mass of the two sculptures is 19.59 kg correct to 4 significant figures.

Answer

After completing the two sculptures, he has to deliver them to Australia within 2 weeks via postage. The following tables show the mailing prices and other costs at the post office.

Destinations (Zones)	Airmail Rate (Delivery in 2-9 days)		Surface Mail Rate (Delivery in 15-30 days)		
	1st 5 kg	Additional 1 kg or part thereof	1st 5 kg	Additional 1 kg or part thereof	
Zone A Malaysia	\$16	\$3	-	-	
Zone B Brunei, Hong Kong, Indonesia, Philippines, Taiwan and Thailand	\$30	\$5	\$18	\$2	
Zone C China, India, South Korea, rest of Asia	\$30	\$5	\$18	\$2	
Zone D Australia, Japan and New Zealand	\$40	\$7	\$20	\$2	

Carton Size	Dimension (cm)	Price
XS	20 × 15 × 9	\$3.90
S	30 × 25 × 15	\$4.90
M	35 × 25 × 15	\$5.90
L	40 × 22 × 22	\$6.90
XL	$45 \times 30 \times 30$	\$7.90
XXL	55 × 32 × 32	\$8.90

Items	Dimensions	Price
Packaging foam peanut	Small bag - 1500 cm ³	\$2
(to fill empty space in the carton)	Medium bag - 7500 cm ³	\$5
,	Large bag - 60000 cm ³	\$39

How to Pack and Seal Packages

- 1. Items may be packed in one carton or two separate cartons.
- 2. Fill all empty space with foam peanuts to protect the contents.
- 3. The weight of the carton box and foam peanuts is negligible.

The cost of the clay he uses is \$41.50 per pack. Each pack contains 5 kg of clay.

Given that the **cost of delivery** should be kept **as low as possible**, decide on the carton size(s) and suggest a sensible selling price of the sculptures.

Justify any decisions you make and show your calculations clearly.

[6]

Answer

Working space for Qn 9

End of Paper

JESN Mathematics Prelim Paper, 1/2024

Qn	Answer	AO	Marks
1	12.57 ≈10B1	AO1	1
2	$\frac{14.75}{0.73} = 20.2054M1$ $21.99 - 20.2054 \approx $1.78A1 (with units)$	AO1	2
	or 21.99×0.73 = 16.05271		
	16.0527 - 14.75 = £1.30A1(with units)		
3(a)	$5(3^3 \times 5^4)^2$ = $5(3^6 \times 5^8)$	AO1	1
	$=3^6 \times 5^9 \dots B1$		
3(b)	$2^{100} - 4 \times 2^{97} = 2^{k}$ $2^{100} - 2^{2} \times 2^{97} = 2^{k}.$ $2^{100} - 2^{99} = 2^{k}M1$ $2^{99}(2-1) = 2^{k} \Rightarrow k = 99A1$	AO2	2
4(a)	Factors of 60:1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 p = 60B1	AO1	1
4(b)(i	$525 = 3 \times 5^2 \times 7$ B1	AO1	1
4(b)(i i)	$15 = 3 \times 5 \times 1$ $35 = 1 \times 5 \times 7$ $x = 1 \times 5^{2} \times 1 \text{ or } x = 3 \times 5^{2} \times 1$ $525 = 3 \times 5^{2} \times 7$ $x = 25, 75 \dots B1, B1$	AO2	2
5	$4540+1328.54 = 4540(1+\frac{r}{100})^{10}M1$ $(1+\frac{r}{100})^{10} = 1.2926299$ $(1+\frac{r}{100}) = 1.2926299^{0.1}M1$ $r = 2.6000 \approx 2.60(3sf)A1$	AO1	3
6	Size of each exterior angle = $\frac{180}{9} \times 4 = 80^{\circ} \dots B1$	AO3	2

	Since the number of sides = $\frac{360^{\circ}}{80^{\circ}}$ = 4.5 is not a positive		
	80° integer, therefore it is not possible to form a regular		
	polygonB1		
	OR		
	Let n be number of sides.		
	$(n-2)\times 180:360$		
	$ \begin{array}{c} (n-2):2 \\ 2n-4:5 \end{array} $	ļ	
	2n-4=5		
	n=4.5		
	OR		
	Exterior + Interior angle = 180 degrees		
	$\frac{(n-2)\times180}{n} = \frac{5}{9}(180)$		
	· · ·		
-()	n = 4.5	AO2	2
7(a)	$x^2 + ax + 17 = (x - 6)^2 + b$	7102	-
	$x^2 + ax + 17 = x^2 - 12x + 36 + b$		
	Comparing		
	a = -12B1		
	$17 = 36 + b \Rightarrow b = -19 \dots B1$		
=0	2	AO3	1
7(b)	$x^2 + ax + 17 = (x - 6)^2 + b$	1103	_
	Since the coefficient of $x^2 > 0$, $x^2 + ax + 17$ is minimum when		
	$(x-6)^2=0$		E
	therefore $x = 6$.	AO2	2
8	New Selling price	AU2	
	$=\frac{136}{76}\times140M1$		
	= \$250.53 <i>A</i> 1		,
9	Let the number of yellow balls be x	AO2	3
9	Number of blue balls is $4x$		
	$\frac{x-5}{4x+10} = \frac{1}{6} \dots M1$		
	6(x-5) = 4x+10		
	6x-30=4x+10M1		
	2x = 40		
	x = 20		
	Number of yellow balls = 20A1		
	2x = 40 $x = 20$		

		1	
	OR		
!	1:4		
	20:80		
	15:90 1:6		
	Ans: 20	İ	
	OR		
	1:6		
 	15:90		
	20:80 1:4		ĺ
	Ans: 20		
	OR		
	Before After		
	1:4 1:6		
	4:16 3:18		
	1 unit = 5		
	4 units = 20	İ	
	OR		
	Let initial yellow balls be x		
	Let initial blue balls be y		
	$4x = y \dots (1)$		
	$6(x-5) = y + 10 \dots (2)$		
	x = 20		
	OR		
	Let initial yellow balls be x		
	Let new yellow balls be y		
	x-5=y(1)		
	$4x + 10 = 6y \dots (2)$ x = 20		
10(a)	$x = -4 \dots B1$	101	
	5y+10=mx	AO1 AO2	2
\~ }		AU2	-
	$y = \frac{m}{5}x - 2$]
	$\frac{m}{5} = \frac{5}{2} \dots M1$		
	m = 12.5A1		7.00
11(a)	78, a, b, c, 42,	AO2	2

		 	
	Common difference = $\frac{78-42}{4}$ = 9		
	a = 78 - 9 = 69		
	b = 69 - 9 = 60		Ì
ļ	c = 60 - 9 = 51B2 / B1 for any 2 correct		
11(b)	General term = $87-9n$ B1	AO2	1
11(c)	87 - 9n < 0M1 o.e	AO2	2
	-9n < -87		1
	$n > 9\frac{2}{3} \Rightarrow n = 10$		
	First negative term = $87-90=-3$		
12(a)		A01	1
	$P \cap Q$		
12(b) (i)	$\varepsilon = \{\text{integer } x : 1 \le x < 15 \}$ $A = \{1,4,9\}$ $B = \{2,3,5,7,11,13\}$ $(A \cup B)' = \{6, 8, 10, 12, 14\}$ $n(A \cup B)' = 5 \dots B1$	AO1	1
12(b)	$B' = \{1,4,6,8,9,10,12,14\}$	AO1	1
(ii)	$A \cap B' = \{1, 4, 9\}$ B1 (no mark award for missing curly		
12(6)	bracket) $C = \{1\}, \{4\}, \{9\}, \{1,4\}, \{1,9\} \text{ or } \{4,9\} \text{ any other possible}$	AO1	1
12(b) (iii)	answersB1		
13	Shape with correct y – intercept $(0,8) + x$ intercepts $(-2,0)$ & $(4,0)$	AO1	3
	Coordinates of turning point (1,9) B1		
14(a)	63B1	AO1	1
(/			

14(b)	72 - 56 = 16M1, A1	A01	2
14(c)	The spread of marks for the group of foreign students is wider since the interquartile range is higher. The cumulative frequency curve will be less steep than the original curve and passes through (63, 80) since both groups have the same median.	AO3	1
15	$\frac{x}{x+9} - \frac{4x+3}{x^2-81}$ $= \frac{x(x-9) - (4x+3)}{(x+9)(x-9)} \text{ or } \frac{x(x-9)}{(x+9)(x-9)} - \frac{4x+3}{(x+9)(x-9)} M1$ $= \frac{x^2 - 9x - 4x - 3}{(x+9)(x-9)}$ $= \frac{x^2 - 13x - 3}{(x+9)(x-9)} \dots A1$	AOI	2
16(a)	$(2x+3y)(7x-5y)$ = $14x^2 - 10xy + 21xy - 15y^2$	AO1	2
16(b) (i)	$x^{3}y^{3} - xy^{3}$ $= xy^{3}(x^{2} - 1)B1$ $= xy^{3}(x + 1)(x - 1)B1$	AO1	2
16(b) (ii)	$5ax - 3ay - 10cx + 6cy$ $= a(5x - 3y) - 2c(5x - 3y) \dots M1$ $= (5x - 3y)(a - 2c) \dots A1$	AO1	2
17	AW = BX (Given) $\angle WAZ = \angle XBW = 90^{\circ}$ (int angle of a square) AD - DZ = AB - AW (AW = DZ given, AD = AB sides of square) AZ = BWB1(for all statements and reasons) By SAS, triangle AWZ is congruent to triangle BXW B1	AO3	2
18(a)	$y = k\sqrt[3]{x+1}$ $1 = k\sqrt[3]{7+1}M1$ $k = 0.5$ $y = 0.5\sqrt[3]{124+1} = 2.5A1$	AO1	2

		AO2	2
18(b)	$F = \frac{k}{d^2}$	AUZ	
	d^2		
ŀ	New $F = \frac{k}{(0.5d)^2} \dots B1$		
	$(0.5d)^2$		
	(k)		
	$=4\left(\frac{k}{d^2}\right)=4F$		
	New value of y becomes 4 times of the original valueB1		
	THOW Value of y obsorbed to make the man to g		
	Other good answers:		
	F increases to 400% of the original value		
	F increases by 300%		
	F increases by 3 times		ļ
	F is increased by a factor of 4		
İ	Acceptable answers:		
	F is multiplied by 4	101	1
19(a)	$1\frac{1}{16}m/s^2$ or $1.0625m/s^2$	AO1	1
	16"		
		ļ	
19(b)	Ave Speed	AO2	2
	$0.5(30+13)16+13\times8$		
	$= \frac{0.5(30+13)16+13\times8}{24}$ M1(correct distance)		
	$=\frac{448}{24}$		
	$=18\frac{2}{3}m/sA1$		
20()	(4)	AO1	2
20(a)	$AB = \begin{pmatrix} 250 & 250 & 100 \\ 400 & 200 & 90 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 600 \\ 690 \end{pmatrix} \dots B2$	1101	-
	$AB = \begin{bmatrix} 250 & 250 & 100 \\ 400 & 200 & 90 \end{bmatrix} \begin{bmatrix} 1 \\ = \begin{bmatrix} 600 \\ 1 \end{bmatrix} \end{bmatrix} \dots B2$		
	(400 200 90)(1)		
20(6)	The elements in AB represent the total amount of flour, butter	AO3	1
20(b)	and sugar (or ingredients) used in making a pandan cake and		
	a marble cake respectivelyB1		
20(c)		AO1	1
20(0)	D 0.2		
	$D = \begin{pmatrix} 0.2 \\ x \\ 0.3 \end{pmatrix} \dots B1$	ļ	
	(0.3)		
20(d)	250 250	AO1	1
-5(-)	$\frac{250}{100} \times 0.2 + \frac{250}{100} \times x + 0.3 = 4.25$		
	x = \$1.38B1		
İ	x = \$1.30		ــــــــــــــــــــــــــــــــــــــ

21	D	AO1	3
	Perpendicular Bisector – B1 Angle bisector - B1 With correct position of E – B1		
22	slant height = $\sqrt{(12x)^2 + (17x)^2} = \sqrt{433}xM1$	AO2	4
	$\pi(12x)^2 + \pi(12x)(\sqrt{433}x) = 4\pi(rx)^2M1$		
	$144\pi x^2 + 12\sqrt{433}\pi x^2 = 4\pi x^2 r^2$		
	$4\pi x^2 r^2 = (144 + 12\sqrt{433})\pi x^2 \dots M1$		
	$r^2 = \frac{(144 + 12\sqrt{433})}{4} = 98.42595$		
	r = 9.92(3sf)cm		
23(a)	$\tan 5^o = \frac{x}{2.1} \dots M1$	AO2	4
	Length of water level = $0.9 + 2(2.1 \tan 5^{\circ})$ M1		
	Area of trapezium = $\frac{1}{2}(0.9 + 0.9 + 2(2.1 \tan 5^{\circ})) \times 2.1 = 2.2758 \text{ m}$	² <i>M</i> 1	
***	Volume of water = $3.9464 \times 100 = 227.5825 \approx 228 \text{m}^3$		
23(b)	$\frac{227.5825}{0.3} \div 60 = 12.6434h$	AO1	1
	=12 hours 38.60 mins		
	=12 hours 39 minsB1		
24(a) (i)	$\overrightarrow{PL} = \frac{1}{3}\overrightarrow{PT}$	AO1	1
	$\overrightarrow{PL} = \frac{1}{3}(m-p)B1$		

24(a) $\overrightarrow{KL} = \overrightarrow{KO} + \overrightarrow{OP} + \overrightarrow{PL}$	A02	1
(ii)		
$\overline{KL} = -\frac{2}{3}m + p + \frac{1}{3}m - \frac{1}{3}p$,
$\overrightarrow{KL} = \frac{2}{3}p - \frac{1}{3}mB1$		
$24(b) \overline{OM} = \overline{OK} + \overline{KM}$	AO3	2
$\overline{OM} = \frac{2}{3}m - \frac{2}{3}m + \frac{4}{3}p$:
$\overrightarrow{OM} = \frac{4}{3} pB1$		
$\overrightarrow{OM} = \frac{4}{3} \overrightarrow{OP} \dots B1$		
Since $\overrightarrow{OM} = \frac{4}{3} \overrightarrow{OP}$ and O is a common point, therefore M lies		
on OP extended.B1		
$\frac{24(c)}{Area \ OTP} = \frac{Area \ KTL}{Area \ KPT} \times \frac{Area \ KPT}{Area \ OTP}$	AO2	1
$\frac{Area\ KTL}{Area\ OTP} = \frac{2}{3} \times \frac{1}{3} = \frac{2}{9} \dots B2(o.e)$		
Area OTP 3 3 9	1.00	
25(a) Size of each int angle = $\frac{(8-2)\times180^o}{8} = 135^o$	AO2	2
Bearing of H from $A = 360^{\circ} - 90^{\circ} - 135^{\circ} = 135^{\circ} \dots A1$		
25(b) $BH^2 = 0.65^2 + 0.65^2 - 2(0.65)^2 \cos 135^o \dots M1$	AO1	3
$BH = \sqrt{1.44250}M1$		
$BH = 1.2010 \approx 1.20 kmA1$		
25(c) Area of BHG = $\frac{1}{2} \times 0.65 \times 1.2010 \times \sin 112.5M1$	AO2	2
Area of BHG = $0.36061 \approx 0.361 \text{km}^2$		

North Vista Secondary Secondary 4 Express Mathematics (4052) 2024

	me
	Scho
	king
ŀ	Mar
	mer 2 N
	Pan

AO Total	7			ဗ									 	
OY	A01			A01						·		··· -	A01	
Mark		M1	A1			M1		A1		,	Αĭ			
	-3 < 3x and 3x < 15	-1 < x and $x < 5$	-1 <x<5< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></x<5<>											
	-5 < 3x - 2 < 13	-3 < 3x < 15	-1< <i>x</i> <5	$\frac{1}{2}x + y = 5 - (1)$	$ 2x - 3y = 13 (2) (1) \times 4 $	$\begin{cases} 2x + 4y = 20 & (3) \\ (2) - (3) \end{cases}$	$(5)^{-}(5)$ -7y = -7	y=1	When $y = 1$, $ y _{2x-3(1)=13}$	(1) (1) (1) (1)	x = 8 $\therefore x = 8, y = 1$		When $r = 7$ and $q = -15$,	
8	1(a)			1(b)									1(c)(i)	

6	Solutions			940	AO Total
	$= 565\ 000 + 605\ 000 + 640\ 000$	0			
	$=1.81\times10^6$ tonnes		B 1		
2(a)(ii)	Percentage increase (2009-2010)	(0)		A01	7
	$=\frac{25000-13000}{75000} \times 100$				
	= 32%		M1		
	Food Waste Recycled in 2011				
	$=\frac{132}{100} \times 99000$			···	
	=130680 tonnes		A1	-	
2(a)(iii)	Per capital food waste	Per capital food waste		A01	2
	_ 565000×1000	\$65000×1000			
	-4.84×1000000×365	$=4.84\times1000000\times366$	MI		
	= 0.319823	=0.318949			
	= 0.320 kg/day	=0.319 kg/day	A1		
2(a)(iv)	Food Waste Output			A01	2
	$=\frac{509000}{100-8.6}\times100$		M1		
	= 556892.779				
	=557000 tonnes		Al		
2(b)(i)	Perimeter of the lake on map A			A01	2
	$=\frac{1700}{100} \times 9$				
	612		A1		
	= 25 cm				
2(b)(ii)	Actual area of lake			A02	2
	$=36\times(68)^{2}$				
	$=166464 \mathrm{m}^2$		IMI		
		44-44-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-			

AO Total			5	7
		-		
Mark	A1			A1
	Area of lake on Map B $= \frac{166464}{51^{2}}$ = 64 cm ²			$2\pi r = 120 - 4x$ $r = \frac{120 - 4x}{2\pi}$ $= \frac{2(60 - 2x)}{2\pi}$ $= \frac{60 - 2x}{\pi} \text{ (shown)}$
			31	3(a)

4

" 0	Solutions		YO	Total
3(p)	$x^2 = \pi \left(\frac{60 - 2x}{\pi}\right)^2$	M1	A02	2
	$x^2 = \frac{(60 - 2x)^2}{\pi}$			
	$\pi x^2 = 3600 - 240x + 4x^2$	A1		
	$(4-\pi)x^2 - 240x + 3600 = 0 \text{ (shown)}$			
3(c)	$(-240)\pm\sqrt{(-240)^2-4(4-\pi)(3600)}$	M1	A01	4
	$x = \frac{1}{2(4-\pi)}$			
	$240\pm\sqrt{45238.93421}$	M1		
	$-2(4-\pi)$			
	= 263.68 or 15.90	A1, A1		
3(d)	Reject $x = 263.68$ because		A03	-
	- the perimeter of the square $(4x)$ must be less than the			1
	length of the wire	Ā		
	- the radius of the circle cannot be negative	DI		
4(a)(i)	Mean = 166 cm	B1	A01	1
4(a)(ii)	Standard deviation		A01	1
	$=\sqrt{\frac{331532}{166}}$			
	= 8.47 cm	B1		

		Wark	OY	Total
4(a)(iii)	1. Since the mean height of Group B (168 cm) is greater mean height of Group A (166 cm), the students in Group B are generally taller on average.	B1	A03	7
	2. Since standard deviation of heights of Group B (9.5 cm) is greater standard deviation of heights of Group A (8.47 cm), the heights of students in Group B have a wider spread /	B1		
4(b)(i)	$\frac{12}{21} = \frac{4}{7}$	B1	A01	-
4(b)(ii)	$\frac{9}{17} \times \frac{8}{16}$	Mi	A01	2
	$\frac{6}{24}$	A1		
4(b)(iii)	$\left(\frac{23}{40} \times \frac{17}{39} \times \frac{16}{38}\right) \times 3$	M1	A01	7
	$=\frac{391}{1235}$	A1		
5(a)	— 4	B1	A01	-

Total	1	-		· <u>-</u>	2						7				
AO	A02	A02			A03			-			¥01		·		
Vak	BI			B1				M1	A1			M1			A1
Solutions	$R_n = 4^{3n+1}$ (or $R_n = 2^{2+6n}$)	$Q_n = \frac{4^{3n+1}}{2^{2n}}$	$=\frac{2^{2(3n+1)}}{2^{2n}}$	$=2^{6n+2-2n}$	24	$2^{4n+2} = 2^7$	4n + 2 = 7	n = 1.25	128 is not a term of sequence Q_n as $n = 1.25$ is not a	positive integer. (or positive whole number)	$\overline{AB} = \begin{pmatrix} 10 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ 12 \end{pmatrix}$ $\overline{AB} = \sqrt{(4-10)^2 + (12-4)^2}$		10	$\overline{(-8)^2}$ \overline{AB}	= 10 units = 10 units
	6(a)(ii)	6(a)(iii)(a)			6(a)(iii)(b)						(p)(q)9				

Total	2		6			. <u>.</u>	60	,
O¥	A01		A02				A02	
Vark	M1	AI		1110	M1	A1	M1fECF on	ZABC]
On Solutions	$\frac{AC}{OC} - \begin{pmatrix} 4 \\ 12 \end{pmatrix}$	=(16) C(1,16)	ļ ļi	20 38 $\angle ACB = \sin^{-1}\left(\frac{30\sin 95^{\circ}}{38}\right)$	-31.050 $\angle ABC = 180 - 95 - 51.856$	= 33.1°	7(b) Let the shortest distance from A to BC be h and greatest angle of depression be θ . $\sin 33.144 = \frac{h}{30}$	$h = 30 \times \sin 33.144$ $= 16.402 \text{ m}$

	Solutions		YO T	Total
Commence of the second	$\tan \theta = \frac{2.5}{16.402}$	M1		
	$\theta = 8.6663^{\circ}$	A1	- 470	÷1.
	$=8.7^{\circ} (1 \text{ d.p.})$			
	Note: Students who found the length of AC in $7(b)$ will be awarded		<u>,, </u>	
	M.2 In /c only if AC is used to calculate the speed of AC in A otherwise, $M2$ is not awarded for working to find AC in A			
(3) <i>L</i>	AC 38	F on	402	4
	$\sin 33.144 = \sin 95$	ZABC		
	$AC = \frac{38\sin 33.144}{\sin 59}$			
	= 20.855 m	M1		<u>. </u>
<u>.</u>	Time taken by $\operatorname{Ken} = \frac{38}{4}$			
	=9.5 s	5	_	
	Speed of Ali = $\frac{20.855}{9.5-3}$			
	= 3.2085 m/s		<u>.</u>	_
	=3.21 m/s (3 s.f.)	A1		
8(a)	Reflex $\angle COA = 360 - 92(\angle s \text{ at a point})$			2
	= 268°	M1		•
··	$\angle CDA = \frac{268}{2}$ (angle at centre = 2 angle at circumferene)			
	=134°			
ļ				

AO Total			e.						
AO			A01						
X	A1 (M1)	(A1)		M1	MI	A1		(M1)	(M1)
On Solutions	Alternative Method $\angle CBA = \frac{92}{2} \text{ (angle at centre = 2 angle at circumferene)}$	$= 46^{\circ}$ $\angle CDA = 180 - 46 \text{ (angless in opp segments)}$ $= 134^{\circ}$	8(b) $\angle OBT = \angle OAT = 90^{\circ}$ (tangent \perp radius) $\angle AOB = 360 - 90 - 38(\angle \text{sum of quad})$	=142°	$\angle BOC = 360 - 92 - 142(\angle s \text{ at a point})$ = 126°	$\angle BCO = \frac{180 - 126}{2}$ (base angles of isos triangle) = 27°	Alternative Method $\angle OBT = \angle OAT = 90^{\circ}$ (tangent \perp radius) $\angle AOB = 360 - 90 - 38(\angle sum \text{ of quad})$	$=142^{\circ}$ $\angle OBA = \frac{180 - 142}{2} \text{ (base angles of isos triangle)}$	$= 19^{\circ}$ $\angle CBA = \frac{92}{2} \text{ (angle at centre = 2 angle at circumferene)}$ $= 46^{\circ}$

Alternative Method to find $\angle AOB$ $= 27^{o}$ Alternative Method to find $\angle AOB$ $\angle OBT = \angle OAT = 90^{\circ} \text{ (tangent 1 radius)}$ $\angle BTO = \angle AT = \frac{38}{2} = 19^{\circ} \text{ (tangents from ext point)}$ $\angle AOT = 180 - 90 - 19 \text{ (\angle sum of triangle)}$ $= 71^{\circ}$ $\angle AOB = 71 \times 2 \text{ (tangents from ext point)}$ $= 142^{\circ}$ Note: Maximum of 1 marks awarded in 8(b) for 2 or more incorrect or missing reasons. 8(c) $\tan 19^{\circ} = \frac{7}{BT}$ $= 20.329 \text{ cm}$ Area of quad $TBOA = 2 \times \frac{1}{2} \times 20.329 \times 7$ $= 142.306 \text{ cm}^{2}$				
				_
		(A1)		
	find ZAOB			
	(tangent Lradius)			
	19° (tangents from ext point)			
	(∠ sum of triangle)			
	nts from ext point)			
	awarded in 8(b) for 2 or more		<u></u>	
	easons.			
$BT = \frac{7}{\tan 19^{\circ}}$ = 20.329 cm Area of quad $TBOA = 2 \times \frac{1}{2} \times \frac{1}{2}$ = 142.3(M1	A02	4
$= 20.329 \text{ cm}$ Area of quad $TBOA = 2 \times \frac{1}{2} \times $				
Area of quad $TBOA = 2 \times \frac{1}{2}$ = 142.3(
=142.30		M1	•	
	$=142.306 \text{ cm}^2$		<u>-</u>	
Area of major sector OBCA	Area of major sector $OBCA = \frac{92 + 126}{360} \times \pi \times 7^2$	M1		
	$= 93.218 \text{cm}^2$		***	

AO Total			A02 4				_
Na'k	A1		M1	M1	M1 A1		
Solutions		= 250 cm	9(a) Volume of 1st scuplture = $\frac{4}{3} \times \pi \times 14^3 + \pi \times 2.5^2 \times 6$ -11611 85 cm ³	Volume of 2nd scuplture = $\left(\frac{1}{2}\right)^3 \times 11611.85$ = 1451.481 cm ³	Mass of 2 scupltures = $(11611.85+1451.481)\times1.5$ = 19594 g = 19.594 kg (show at least 5 sf) = 19.59 kg (shown)	Notes: A1 not awarded for students did not show the value of the total mass to at least 5 sig fig before rounding off to 4 sig fig.	

		Mark	YO.	Total
NO BEEN CONTRACTOR OF THE CONT	Volume of 1st scuplture = $\frac{4}{3} \times \pi \times 14^3 + \pi \times 2.5^2 \times 6$	(M1)		
	$= 11611.85 \text{ cm}^{3}$ Macc of 1st compleme = 11611.85 x 1.5	(M1)		
	=17417.775 g			
	Mass of 2nd scuplture = $\left(\frac{1}{2}\right)^3 \times 17417.775$			
	= 2177.221g	(41)		
	Mass of 2 scupltures = $17417.775 + 2177.221$			
	$=19594 \mathrm{g}$			
	$= 19.594 \mathrm{kg}$ (show at least 5 sf)			
	=19.59 kg (shown)		-, -	
			704	7
(a) -	Packs of clay for 2 scupltures = $\frac{19.0913}{5}$		3	•
	= 3.9195		_	
	= 4			
	Total cost of clay for 2 scupltures = 4×41.50			
	=\$166	MI[cost of clay]	•	
	Total cost of postage for 2 scupltures = $40 + (20 - 5) \times 7$			
	= \$145	M1[Airmail cost]		
	Carton size: XXL Volume of empty space in carton	3		
	$= (55 \times 32 \times 32) - (11611 + \frac{11611}{11})$	M1[empty space		
	$= 43257625 \text{ cm}^3$	III CALIOII]	-"	
i,	- T. J. J. J. J. J. J. J. J. J. J. J. J. J.	<u></u>		

Ğı.	Solutions	Wark	AO Total
	Total cost of clay + delivery + carton + foam peanuts = $166 + 145 + 8.90 + (6 \times 5)$		
	= \$349.90		
	Carton sizes: S and XL Volume of empty space in carton		
	= $(30 \times 25 \times 15) + (45 \times 30 \times 30) - (11611 + \frac{11611}{8})$		
	= 38687.625 cm ³	M1[empty space in 2 cartons]	<u> </u>
	Total cost of clay + delivery + carton + foam peanuts = $166 + 145 + 4.90 + 7.90 + (5 \times 5 + 2)$ = \$350.80	M1 [Comparison of total cost of 2	,
	XXL carton should be used.	decision on	
-	Selling price = a value > total costs, with reasonable justification e.g. make a profit, cover labour cost, cover cost of materials and delivery.	catton size] A1[selling price with justification]	
	Notes: A1 not awarded for students did not provide justification for their proposed selling price.		