		Calculator Model :
15 UF 15		SECONDARY SCHOOL camination 2024
CANDIDATE NAME		
CLASS		INDEX NUMBER
MATHEMATICS		4052/01
Paper 1		15 August 2024
Secondary 4 Express /	5 Normal (Academic) 2 hours 15 minutes
Setter: Mr Wong Yiu Ha	ang	90 Marks
Additional Materials: NI	L	
READ THESE INSTRI	UCTIONS FIRST	
Write your name, class a Write in dark blue or blace Use a pencil for any diage Do not use staples, paper	ck pen. grams or graphs.	all the work you hand in.
Answer all questions.		
question. Omission of es The use of an approved If the degree of accuracy	ssential working will r scientific calculator is y is not specified in th	be shown in the space below the result in loss of marks. s expected, where appropriate. ne question, and if the answer is not ures. Give answers in degrees to one
For π , use either your ca answer in terms of π .	ilculator value or 3.14	42, unless the question requires the

question.

For Exami

The number of marks is given in brackets [] at the end of each question or part

The total number of marks for this paper is 90.

For Examiner's Use						
Total						

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

[Turn Over

Answer all the questions

1	(a)	The approximate mass of the earth is 5.976×10^{24} kg. How many times is the earth heavier than an average male adult who weighs 75 kg?			
		Give your answer in standard form correct to 3 significant figures.			
		Answer: [1]			
	(b)	The sum of 3 consecutive even numbers is estimated to be 300 when rounded off to 1 significant figure. Find the largest possible set of the 3 numbers,			
		Answer:,			
2	(a)	Solve the inequality $2y - 1 < \frac{11y}{4} < \frac{1}{4}$			
		Answer: [2]			
	(b)	Given $-25 \le x \le 50$ and $-15 \le y \le -5$, what is the smallest possible value for $x + y^2$?			
		Answer: [1]			

3	(a)	Write 756 as a product of its prime factors.
		Answer: [1]
	(b)	Given that $495 = 3^2 \times 5 \times 11$, find the smallest positive integer p such that 756p is a multiple of 495.
		Answer:[1]
	(c)	The number 756 $\times \frac{a}{b}$ is a perfect cube where a and b are both prime numbers.
		Find the smallest possible value of a and smallest possible value of b .
		Answer: $a =, b =$
		,,,,,,, .

4 Simplify
$$\frac{a^2 - 3a + 2}{9a^2 - 1} \div \frac{2a - 2}{6a - 2}$$
.

Answer: [2]

5 (a) Simplify
$$\frac{(2x^3y^2)^{-4}}{(10x^{-2}y^3)^2} \div \sqrt[3]{27x^{-3}y^6}$$
.

Answer: [3]

(b) Solve	3^{x+2}	×	$3(3^5)$	=	1
-----------	-----------	---	----------	---	---

Answer: [2]

6 (a) Factorise
$$a^3 - 2a^2b - 4a + 8b$$
.

Answer: [2]

(b) Solve
$$\frac{3x+2}{9x} = \frac{1}{7x-3}$$
.

Answer:[3]

Peter has \$20 000 to invest in either Bank A, Bank B or Bank C for 5 years. The table below shows the investment plans.

Bank	Interest rate per annum
A	3.0 % compound interest, compounded annually
В	3.2 % simple interest annually
C	Fixed interest of \$3000 after 5 years

Which plan should he invest in? Explain your answer.

	******	 •	 	 	 	 •••
• • • • •	• • • • • •	 • • • • • • •	 •	 	 •	 • •
		 	 	 	 	 31

random from the carton and puts them into a smaller box for sale.						
(a)	Find the probability that there is at least 1 rotten apple in the box for sale.					
(b)	Answer:					
	Do you agree with the Student A's claim? Explain your answer.					
	······································					
••••						
	[2]					

9 A set of Pollutant Standards Index (PSI) taken from different parts of Singapore is as follows.

28 30 48 19 70 50 32 72

Represent the data using a box-and-whisker plot.

[3]

Sketch the graph in the spaces below. 10

(a)
$$y = \frac{4}{x}$$

[1]

(b)
$$y = -2x^3$$

[1]

Hence, state the number of solutions for the equation $\frac{4}{x} + 2x^3 = 0$ **(c)**

Answer:[1]

11 (a) Express y = -(x+2)(x-5) in the form of $y = -(x+p)^2 + k$. State the value of p and the value of k.

(b) Sketch the graph of y = -(x + 2)(x - 5) in the given axes below. Indicate any intercepts on the axes. [3]

(c) Find the coordinates of the turning point of the graph y = -(x+2)(x-5).

Answer: (.....,) [1]

12 (a) In the diagram, A, B, C and D are points on the circumference of a circle with centre O. AB is parallel to DO and angle $AOD = 67^{\circ}$. AOC is the diameter of the circle.

Find angle BCD.

Give a reason for each step of your working.

		Answer:	[3]
(b)	Explain why angle DAB is 123.5°.		
			•••
			[1]

(c)	Find angle DBC.
	Give a reason for each step of your working.

Answer:		[2]]
---------	--	-----	---

It is given that $\sqrt{3p^3 + 6r^2} = \frac{5r}{2}$. Make r the subject of the equation.

Answer: [3]

14	The base areas of the	vo geometrically	similar cones	are in the ratio	of 9:49
----	-----------------------	------------------	---------------	------------------	---------

(a) If the volume of the bigger cone is 1200 cm³, find the volume of the smaller cone.

Answer:	,	cm^3	[2]
---------	---	-----------------	-----

(b) 80% of the smaller cone was filled with water. Find the height of water in the smaller cone given that the radius is 3 cm.

Answer: cm [2]

15	The illumination, I units, of a bulb varies inversely as the square of the distance, d metrosis in the given that the illumination is 8 units when the distance is 3 m.		
	(a)	Find an equation connecting I and d .	
		Answer: [2]	
	(b)	Find the percentage change in the illumination of the bulb when the bulb is shifted to a new location which is one quarter of the original distance.	
		Answer: [2]	

16 (a)	The figure is made up of a 7-sid and a parallelogram <i>OHFG</i> , who	ed regular polygon with centre O , a triangle OAG ere GF is parallel to OH and GO is parallel to FH .
	(i) Find angle OGF.	G G G G G G G G G G
	(ii) Find angle EFH.	Answer: [2]
(b)	Three of the exterior angles of interior angles are 163° each, Find the value of n.	Answer:

Answer: [2]

17 It is given that

```
\xi = \{x: x \text{ is polygon}\},\ p = \{x: x \text{ is a parallelogram}\},\ q = \{x: x \text{ is a quadrilateral}\}.\ r = \{x: x \text{ is a rectangle}\}\ and s = \{x: x \text{ is a square}\}.
```

(a) Draw a clearly labelled Venn diagram in the space below to show the relationship between sets ξ , p, q, r and s. [3]

(b) Label in the Venn diagram above, the element "kite".

[1]

18	Solutions to this question by accurate drawing will n	iot be accepted
----	---	-----------------

The diagram below shows a triangle ABC, with A(3,6) and B(-11,0).

Triangle ABC has an area of 22.5 units². E is a point on the line AB passing through the y-axis.

(a) Find the length AB.

Answer:		[2]
---------	--	-----

(b) Find the equation of the line AB.

(c) State the coordinates of E.

(d)	Find the coordinates of C .
	Answer: (,) [2]
(a)	Circum that ADDC is a small-language Could be a Country of the Cou
(e)	Given that $ABDC$ is a parallelogram, find the coordinates of D .
	Answer: (,) [1]
(f)	The line l has equation $7y - 3x + 15 = 0$.
	Explain whether line <i>l</i> will ever cut the line AB when both lines are extended. Show your workings clearly.
	Show your workings clearly.

	[2]
	[2]

In a scale drawing, Town W, X and Y are shown below. Town Z is 10 cm from Town W and 8 cm from Town Y.

(a)	(i)	On the diagram, construct the quadrilateral WXYZ.	
	(ii)	Measure angle WZY. Answer:	ij
(b)	On th	ne diagram, using compass, construct	
	(i) (ii)	the perpendicular bisector of XY. the angle bisector of angle WXY. [1]	.] []
(c)	and Y	c claimed that it is possible to locate Town G which is equidistant from Points W , Y , and angle WXG = angle YXG . Explain whether Mark's claim is valid. Show yourings clearly.	X 1r
	,		
		[2	2]

- Mr Tan rides his motorcycle to a coffee shop for breakfast.

 He starts from rest and accelerates at a constant rate to a speed of 20 m/s in 15 seconds.

 He then travels at this constant speed of 20 m/s for the next 20 seconds before coming to rest in the next 10 seconds.
 - (a) On the given axes below, sketch Mr Tan's speed-time graph. [2]

(b) (i) Find the acceleration in the first 15 seconds.

Anesszer	***************************************	m/a ²	Г 17	ì
Answer:	******************************	m/s-	H	ı

(ii) Calculate the average speed for the whole journey.

Answer: m [2]

--- END OF PAPER 1 ---

Calculator Model :	
	į

ORCHID PARK SECONDARY SCHOOL Preliminary Examination 2024

TAMAS COUNTY	Preliminary Exam	ination 2024	
CANDIDATE NAME			
CLASS		INDEX NUMBER	
MATHEMATICS		40	52/02
Paper 2		19 Augus	t 2024
Secondary 4 Express	/ 5 Normal (Academic)	2 hours 15 m	inutes
Setter: Mrs. Jay		90	Marks
Additional materials	s: NIL		
READ THESE INSTRUC	TIONS FIRST		
Write in dark blue or bla Use a pencil for any diag	•	•	
Answer all questions.			
Omission of essential wo The use of an approved If the degree of accuracy the answer to three sign	any question, it must be shown orking will result in loss of mark scientific calculator is expected is not specified in the question ificant figures. Give answers in lculator value or 3.142, unless to	s. , where appropriate. n, and if the answer is not exac degrees to one decimal place	ct, give
The number of marks is a	given in brackets [] at the end rks for this paper is 90.	of each question or part ques	tion.
		For Exa	niner's Use
		Total	
This docum	ent consists of 23 printed pa	ges.	

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions.

1 (a) (i) Express $2x^2 - 6x - 12$ in the form	$k(x-a)^2 - b$, where k is an integer.
--	---

(ii) Hence, solve
$$2x^2 - 6x - 12 = 0$$
.

(b) Simplify
$$\frac{3x+1}{2x^2+11x+12} - \frac{1}{x+4}$$
.

Answer: [3]

In the diagram, ABCD is a rectangle. Given that AB = (2x + y) cm, BC = (x + y) cm, CD = (3x + 5y + 3) cm and AD = (4x + 5y - 7) cm. Find the values of x and y.

3	(a)	By using factorisation, solve $(x-3)(2x+8) = -1$	12
J	(a)	by using incluits audit, surve (x - s // 2x + o/)	LZ.

(b) Solve the equation
$$\frac{4}{2x-3} - \frac{3}{x+2} = 1$$
.

Give your solutions correct to two decimal places.

The diagrams below show a solid hemisphere and a solid cone. The hemisphere has a radius of 3y cm. The cone has a radius of 2y cm and slanted height *l* cm.

(a) Show that the total surface area of the solid cone is $2\pi y(l+2y)$ cm². [2]

(b) The total surface area of the solid hemisphere is equal to the total surface area of the solid cone. Find l in terms of y.

Answer:[3]

	(c)	The volume of the hemisphere is 729 cm ³ . Calculate the volume of the cone.
		•
		Answer:
5	The s	scale of a map is 2 cm: 1 km.
	(a)	Write this scale in the form $1:n$.
		Answer:[1]
	(b)	The area of a park is represented by an area of 456 cm ² on the map. Calculate the
	(0)	actual area of the land in square kilometres.
		Answer:[2]

The points A, B, C, D and E are shown in the diagram below such that ABC and AED are straight lines and BE = $\sqrt{8}$ cm.

(a))	Without	using	a	calculator,	find
---	----	---	---------	-------	---	-------------	------

(i) $\sin ABE$.

Answer.	 ſ	1	1
MINDWEI.	 L	•	Ł

(ii) $\cos ABE$

(b) Using your answer in (a)(i), calculate the area of triangle ABE

Answer: [2	Answer:		[2]
------------	---------	--	-----

(c) Given that triangle ABE and triangle ACD are similar, calculate the area of triangle ACD.

Answer: [2]

BLANK PAGE

Complete the table of values for $y = x - \frac{4}{x^2}$. 7 (a)

Values are given to one decimal place where appropriate.

x	-15	-10	-5	-1	1	5	10	15
y	-15.0		-5.2	-5	-3	4.8	10.0	15.0
·	<u> </u>	<u></u>						[1]

- On the grid on page 11, draw the graph of $y = x \frac{4}{x^2}$ for $-15 \le x \le 15$. **(b)** The graph has an asymptote at x = 0 (the graph goes near but do not cut through [3] the y-axis).
 - On the same grid, draw the graph of 2y 2x = -7 for $-15 \le x \le 15$. (i) (c) [2]
 - Write down the x-coordinates of the points where the line intersects the (ii) curve.

These values of x in part (ii) are the solutions of the equation (iii) $Ax^2+B=0.$

Find the value of A and the value of B.

8 P, R and Q are points on the circle with centre, O. PT and QT are tangents to the circle at P and Q respectively. $\angle PTQ = 60^{\circ}$ and $\angle OQR = 20^{\circ}$.

Writing your reasons clearly, find

(a) $\angle TQP$,

Answer:
$$\angle TQP = \dots ^{\circ}[2]$$

(b) $\angle PRQ$,

Answer:
$$\angle PRQ = \dots ^{\circ}[1]$$

(c) ∠*OPR*,

	·
(d)	If the radius of the circle is 5 cm, find the area of the major segment QRP of the circle.

Answer: cm² [3]

- 9 ABCD is a parallelogram. A is the point (-6, -2) and B is the point (-4, -7). $\overrightarrow{BC} = {8 \choose -2}.$
 - (a) Find the length of the line AB.

Answer:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	units	[2
---------	---	-------	----

(b) Find the equation of the line CD.

(c)	X is t	the point where the diagonals of th	e parallelogram intersect.
	(i)	Find \overrightarrow{XC} .	
		Answ	$er: \overrightarrow{XC} = (\dots)$ [2]
	(ii)	Find the position vector of X .	
			Answer: [2]
(d)	P is t	the point on BC such that $\frac{BP}{PC} = \frac{2}{1}$.	
	Find	the ratio of the area of $\frac{\Delta ABP}{\Delta ACP}$.	
			Answer:[1]

The table below summarises the times taken by female participants to complete a 10 km race.

Time (t min)	$30 \le t < 40$	$40 \le t < 50$	$50 \le t < 60$	$60 \le t < 70$	$70 \le t < 80$
Freq	20	39	16	20	<u> </u>

(a)	Given that the estimated mean time is 50.1 min, show that the value of x is 5 .	
()		[2]

(b) Calculate an estimate of the standard deviation.

(c)	The mean time for male participants to complete the race was 45.3 min and the standard deviation was 12.6 min. Make 2 comparisons between the times for male and female participants.
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••

Answer: min [1]

11	The	first four terms in a sequence of numbers are given below.
	$T_1 =$	$3^2 + 5 = 14$
	$T_{\rm z} =$	$4^2 + 8 = 24$
	$T_3 =$	$5^2 + 11 = 36$
	$T_4 =$	$6^2 + 14 = 50$
	(a)	Find T_5 .
		<i>Answer:</i> [1]
	(b)	Explain why the value of T_n must be even for all values of n .
		[1]
	(c)	Show that the <i>nth</i> term of the sequence, T_n , is given by $n^2 + 7n + 6$. [2]

(a)	T_p and T_{p+1} are consecutive terms in the sequence. Find and simplify an expression, in terms of p for $T_{p+1} - T_p$.
	Answer: [2]
(e)	Explain why two consecutive terms of the sequence cannot have a difference of 4.
	[2]
	[4]

The diagram shows the positions of a harbour, H, a lighthouse, L, and two buoys P and Q. HPQ is a straight line. The bearing of P from H is 306° . HP = 3 km, PL = 2.5 km and angle $HPL = 124^{\circ}$.

(a) Find the bearing of	I the bearing of	Find	(a)
-------------------------	------------------	------	-----

(i)	H from	P.
\- /		,

Answer:	 [2]

(ii) L from P.

(b) A helicopter is 500 m vertically above P. Find the angle of elevation from L to the helicopter.

Answer: [1]

	20
(c)	Calculate HL.
	Answer: [2]
(d)	A ship sailed from the harbour along the line HPQ at an average speed of 4.5 m/s. At 0809 hours, it reached a point X which is nearest to the lighthouse.
	Find the time it left the harbour. Correct your answer to the nearest minute.

Answer: [3]

In a shooting game, the player has to shoot with a gun to capture a monster. The bullet from the gun has to land on a circular target on the monster so that a net will open up. The circular target has four different sizes.

Target 1 is a big circle;

Target 2 is three quarters of the area of Target 1;

Target 3 is half of the area of Target 1;

Target 4 is one quarter of the area of Target 1.

(a) Sam estimates that the probability that he hits Target 1 is about 0.88. Given that the probability of hitting the circular target is proportional to its area, show that the probability that Sam hits Target 2 and Target 4 is estimated to be 0.66 and 0.44 respectively.

Answer: [2]

Even if the bullet hits the circular target, the monster might not be captured as it can break free from the net. The probability of successfully capturing the monster depends on the area and colour of the circular target, and the type of bullet that the player uses.

Information that the players need is given below.

Estimated probability of Sam hitting the target.

		Target 2	Target 3	Target 4
Probability of Sam hitting the target	0.88	0.66	0.44	0.22

In-built multipliers for capturing monster if the monster has been hit.

Multiplier for capturing monster 0.7 0.8 0.95 0.5	Targets of different sizes	Target 1	Target 2	Target 3	Target 4
	Multiplier for capturing monster	0.7	0.8	0.95	0.5

Targets of different colours	Green	Yellow	Orange	Red
Multiplier for capturing monster	0.9	0.7	0.5	0.4

Types of bullets	Hallow Paint	Soft Point	Flat Nose
Multiplier for capturing monster	0.6	0.7	0.9

To calculate this probability, in-built multipliers are assigned to each of these three factors. For example, if a player uses a hollow point bullet and captures a monster with a yellow Target 3, the probability of successfully capturing the monster is given by $0.6 \times 0.7 \times 0.95 = 0.399$.

(b) Show that the estimated probability that Sam will hit and capture a monster with an orange Target 4 using a Flat Nose Bullet is 0.0495.

[2]

In the game, the target changes colour from green to yellow to orange to red and finally back to green. Each change occurs every second. In addition, the target also changes its size from Target 1 to 2 to 3 to 4 and then back to Target 1. Each change also occurs every second. For example, if a monster appears with a yellow Target 3, it will change to an orange Target 4 in the next second, and then a red Target 1 in the following second.

(c) At time t = 0 seconds, Sam sees a monster with a red Target 2. He only has one Soft Point Bullet. State the colour, Target size and find the maximum probability and the number of seconds Sam should take to shoot at the monster in order to maximise his chance of hitting and capturing it. Justify your decision and show your calculations clearly.

[6]

Paper 1	
Qn No.	Solutions
la	7.97×10^{22}
1b	Sum must be ≤ 349 $\frac{349}{3} = 116.333$ 3 even numbers are: 114, 116, 118
():310002 - 1925.	
2a	$2y - 1 < \frac{11y}{4} and \frac{11y}{4} < \frac{1}{4}$ $8y - 4 < 11y and 11y < 1$ $-3y < 4 and y < \frac{1}{11}$ $y > -1\frac{1}{3} and y < \frac{1}{11}$ $-1\frac{1}{3} < y < \frac{1}{11}$
2b	$-25 + (-5)^2 = 0$
3a	$756 = 2^2 \times 3^3 \times 7$
3b	$756 p = 2^2 \times 3^3 \times 7 \times p$
	Smallest p = $5 \times 11 = 55$ Or LCM = $2^2 \times 3^3 \times 5 \times 7 \times 11$ $756p = 2^2 \times 3^3 \times 7 \times p$ $p = 5 \times 11 = 55$
3c	$756 \times \frac{a}{b} = \text{perfect cube}$
	$2^{2} \times 3^{3} \times 7 \times \frac{a}{b} = \text{perfect cube}$ $a = 2, b = 7$
4a	$\frac{a^2 - 3a + 2}{9a^2 - 1} \cdot \frac{2a - 2}{6a - 2}$ $= \frac{(a - 2)(a - 1)}{(3a - 1)(3a + 1)} \times \frac{2(3a - 1)}{2(a - 1)}$ $= \frac{a - 2}{3a + 1}$
	(2-3-2)-4
5a	$\frac{(2x^3y^2)^{-4}}{(10x^{-2}y^3)^2} \div \sqrt[3]{27x^{-3}y^6}$

	$= \frac{2^{-4}x^{-12}y^{-8}}{100x^{-4}y^{6}} \times \frac{1}{(27x^{-3}y^{6})^{\frac{1}{3}}}$
	1 1
	$=\frac{1}{1600x^8y^{14}}\times\frac{1}{3x^{-1}y^2}$
	$=\frac{1}{4800x^7y^{16}}$
<i>E</i> 1.	$3^{x+2} \times 3(3^5) = 1$
5b	
	$3^{x+2} \times 3^{1}(3^{5}) = 1$ $3^{x+2} \times 3^{6} = 3^{0}$
	x+2+6=0
	x=-8
6a	$a^3 - 2a^2b - 4a + 8b$
	$=a^2(a-2b)-4(a-2b)$
	$=(a^2-4)(a-2b)$
	=(a-2)(a+2)(a-2b)
6b	$= (a-2)(a+2)(a-2b)$ $\frac{3x+2}{9x} = \frac{1}{7x-3}$
	(3x+2)(7x-3) = 9x
	$21x^2 - 9x + 14x - 6 = 9x$
	$21x^2 - 4x - 6 = 0$
	Using general formula
	$x = 0.638 \ or \ x = -0.448$
7	Bank A:
	$(r)^n$
	Total amount = $P\left(1 + \frac{r}{100}\right)^n$
	$=20000 \left(1+\frac{3}{100}\right)^5$
	= \$23,185.48
	Bank B:
	Total amount = $20000 + \frac{3.2}{100} \times 20000 \times 5$
	=\$23,200
	Bank C:
	Total amount = \$23,000
	He should invest in Bank B as the interest he get is the highest.
	The smound makest in Dank D as the interest he for is the influence.
0.	Drobability of all good apple
8a	Probability of all good apple $= \frac{17}{20} \times \frac{16}{19} \times \frac{15}{18}$

F	0.80610
	= 0.59649
	Probability of at least 1 bad
	= 1- 0.59649
	$= 0.404$ or $\frac{23}{57}$
8b	No. $\frac{17}{20} \times \frac{16}{19} \times \frac{3}{18}$ refers to the probability of (Good, Good, Bad).
	It can also be (Good, Bad, Good) or (Bad, Good, Good).
	Probability should be $ \frac{17}{20} \times \frac{16}{19} \times \frac{3}{18} + \frac{17}{20} \times \frac{3}{19} \times \frac{16}{18} + \frac{3}{20} \times \frac{17}{19} \times \frac{6}{18} $ $ = 3 \left(\frac{17}{20} \times \frac{16}{19} \times \frac{3}{18} \right) $
9	19 28 30 32 48 50 70 72
	$Median = \frac{32+48}{2} = 40$
	Lower quartile $=\frac{28+30}{2}=29$
	←
	Upper quartile $\frac{-50+70}{2} = 60$
	19 29 60 60 60 72
10a	
10b	\
10c	$\frac{\frac{4}{x} + 2x^3 = 0}{\frac{4}{x} = -2x^3}$
	$\left \frac{4}{x} = -2x^3 \right $
	no intersection for $y = \frac{4}{x}$ and $y = -2x^3$
·····	de

	0 solution
Politicas (1)	
11a	-(x+2)(x-5)
	$= -(x^2 - 5x + 2x - 10)$
	$=-(x^2-3x-10)$
	$=-[(x-1.5)^2-(-1.5)^2-10]$
	$=-[(x-1.5)^2-12.25]$
	$=-(x-1.5)^2+12.25$
	p = -1.5. $k = 12.25$
11b	
	10
	-2/ 5 ~
11c	(1.5, 12.25)
11c	Angle ACD = 2 angle AOD
	Angle ACD = 2 angle AOD = $67^{\circ} \div 2$
	Angle ACD = 2 angle AOD
	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference)
	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO)
	Angle ACD = 2 angle AOD = $67^{\circ} \div 2$ = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = $180^{\circ} - 67^{\circ} - 90^{\circ}$
	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO)
	Angle ACD = 2 angle AOD = $67^{\circ} \div 2$ = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = $180^{\circ} - 67^{\circ} - 90^{\circ}$ = 23° (right angle in semicircle) Angle BCD = $23^{\circ} + 33.5^{\circ} = 56.5^{\circ}$
	Angle ACD = 2 angle AOD = $67^{\circ} \div 2$ = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = $180^{\circ} - 67^{\circ} - 90^{\circ}$ = 23° (right angle in semicircle)
12a	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = 180° -67°-90° = 23° (right angle in semicircle) Angle BCD = 23° + 33.5° = 56.5° Angle DAB and angle DCB are angles in opposite segments in a circle and adds up to 180°
12a	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = 180° -67°-90° = 23° (right angle in semicircle) Angle BCD = 23° + 33.5° = 56.5° Angle DAB and angle DCB are angles in opposite segments in a circle and adds up to 180° Angle DBA = angle DCA
12a	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = 180° -67°-90° = 23° (right angle in semicircle) Angle BCD = 23° + 33.5° = 56.5° Angle DAB and angle DCB are angles in opposite segments in a circle and adds up to 180° Angle DBA = angle DCA = 33.5° (angles in same segment)
12a	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = 180° -67°-90° = 23° (right angle in semicircle) Angle BCD = 23° + 33.5° = 56.5° Angle DAB and angle DCB are angles in opposite segments in a circle and adds up to 180° Angle DBA = angle DCA
12a	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = 180° -67°-90° = 23° (right angle in semicircle) Angle BCD = 23° + 33.5° = 56.5° Angle DAB and angle DCB are angles in opposite segments in a circle and adds up to 180° Angle DBA = angle DCA = 33.5° (angles in same segment) Angle DBC = 90° - 33.5° = 56.5° (right angle in semicircle)
12a	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = 180° -67°-90° = 23° (right angle in semicircle) Angle BCD = 23° + 33.5° = 56.5° Angle DAB and angle DCB are angles in opposite segments in a circle and adds up to 180° Angle DBA = angle DCA = 33.5° (angles in same segment) Angle DBC = 90° - 33.5° = 56.5° (right angle in semicircle)
12a 12a 12c	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = 180° -67°-90° = 23° (right angle in semicircle) Angle BCD = 23° + 33.5° = 56.5° Angle DAB and angle DCB are angles in opposite segments in a circle and adds up to 180° Angle DBA = angle DCA = 33.5° (angles in same segment) Angle DBC = 90° - 33.5° = 56.5° (right angle in semicircle)
12a 12a 12c	Angle ACD = 2 angle AOD = 67° ÷ 2 = 33.5° (angle at centre = 2 angle at circumference) Angle BAO = 67° (alt angles, AB // DO) Angle BCA = 180° -67°-90° = 23° (right angle in semicircle) Angle BCD = 23° + 33.5° = 56.5° Angle DAB and angle DCB are angles in opposite segments in a circle and adds up to 180° Angle DBA = angle DCA = 33.5° (angles in same segment)

	1232
	$12p^3 = r^2$ $r = \pm \sqrt{12p^3}$
	$r = \pm \sqrt{12p^3}$
14-	
14a	$\frac{A_1}{A_2} = \left(\frac{l_1}{l_2}\right)^2$
	$\frac{9}{49} = \left(\frac{l_1}{l_2}\right)^2$
	$\frac{l_1}{l_2} = \frac{3}{7}$
	*2 /
	$\frac{v_1}{v_2} = \left(\frac{l_1}{l_2}\right)^3$
	$\frac{V_1}{V_2} = \frac{27}{343}$
	$V_1 = 1200 \div 343 \times 27 = 94.5 \text{ cm}^3$
14b	Radius 3 refers to that of water though qn may be a bit vague
•	
	Volume of water = $94.5 \times 80\% = 75.6$
	$\frac{1}{3}\pi(3)^2h = 75.6$
	h = 8.02 cm
	Accept 3 as radius of cone also $v_1 = 4$
	$\frac{v_1}{v_2} = \frac{4}{5}$
	$\frac{r_1}{r_2} = \sqrt[3]{\frac{4}{5}}$
	$r_1 = \sqrt[3]{\frac{4}{5}} \times 3 = 2.78495$
	$\frac{1}{3}\pi(2.78495)^2h = 75.6$
	H = 9.31 cm
15a	$I = \frac{k}{d^2}$ $8 = \frac{k}{3^2}$ $k = 72$
	$8 = \frac{k}{-2}$
	k = 72
	$I = \frac{72}{d^2}$
15b	$\frac{d^2}{1 - 72}$
	$I = \frac{72}{(0.25d)^2}$
	$I = \frac{72}{0.0625d^2}$
	$I = \frac{1152}{d^2}$
	$\frac{1152}{72} = 16 \text{ times}$
	$\% \text{ change} = \frac{1152-72}{72} \times 100\% = 1500\%$
	$70 \text{ Charge} = \frac{700\%}{72} \times 100\% = 1500\%$

16ai	Angle FGA= $\frac{(7-2)180}{7}$ = 128.57°
	Angle OGF = 128.57° ÷ 2 = 64.3°
16aii	Angle GFH = $180 - 64.3 = 115.7^{\circ}$
	Angle EFH = 128.57 - 115.7 = 12.9°
16b	Sum of exterior angle = 360°
100	18 + 22 + 32 + 4(17) + (n - 7)(20) = 360
	140 + 20n - 140 = 360
	n=18
17a	ξ
	q
	(p(r(s)))
:	Square is a type of rectangle
	Square and rectangle is a type of parallelogram
17b	ξ
	, d
	(p(r(s)))
	kite
10-	
18a	$AB = \sqrt{(6-0)^2 + (3-(-11))^2}$
	$=\sqrt{36+196}$ =15.2 units
18b	Gradient = $\frac{6-0}{3-(-11)} = \frac{3}{7}$
	y = mx + C At (3,6), $6 = \frac{3}{7}$ (3) + C
	· ·
	$C = 4\frac{5}{7}$
	$y = \frac{3}{7}x + 4\frac{5}{7}$ $y = mx + 4\frac{5}{7}$
18c	
	at x = 0
	$y=4\frac{5}{7}$

$E = (0, 4\frac{5}{7})$ 18d $\frac{1}{2}(BC)(6) = 22.5$ BC = 7.5 $C = (-3.5, 0)$ 18e Coordinate A to C x shifted -6.5 units y shifted -6 units Coordinate D = (-11 - 6.5, 0 - 6) = (-17.5, -6) 18f $7y - 3x + 15 = 0$ $7y = 3x - 15$ $y = \frac{3}{7}x - \frac{15}{7}$ As line I has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel anot meet	
BC = 7.5 $C = (-3.5, 0)$ 18e Coordinate A to C $x $	
BC = 7.5 $C = (-3.5, 0)$ 18e Coordinate A to C $x $	
18e Coordinate A to C x shifted -6.5 units y shifted -6 units Coordinate D = $(-11 - 6.5, 0 - 6)$ = $(-17.5, -6)$ 18f $7y - 3x + 15 = 0$ 7y = 3x - 15 $y = \frac{3}{7}x - \frac{15}{7}$ As line I has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel.	
18e Coordinate A to C x shifted -6.5 units y shifted -6 units Coordinate D = $(-11 - 6.5, 0 - 6)$ = $(-17.5, -6)$ 18f $7y - 3x + 15 = 0$ 7y = 3x - 15 $y = \frac{3}{7}x - \frac{15}{7}$ As line I has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel	
x shifted -6.5 units y shifted -6 units Coordinate D = $(-11 - 6.5, 0 - 6)$ = $(-17.5, -6)$ 18f $7y - 3x + 15 = 0$ $7y = 3x - 15$ $y = \frac{3}{7}x - \frac{15}{7}$ As line I has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel and I has the same gradient I has the	
x shifted -6.5 units y shifted -6 units Coordinate D = $(-11 - 6.5, 0 - 6)$ = $(-17.5, -6)$ 18f $7y - 3x + 15 = 0$ $7y = 3x - 15$ $y = \frac{3}{7}x - \frac{15}{7}$ As line I has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel and I has the same gradient I has the	
y shifted -6 units Coordinate D = $(-11 - 6.5, 0 - 6)$ = $(-17.5, -6)$ 18f $7y - 3x + 15 = 0$ $7y = 3x - 15$ $y = \frac{3}{7}x - \frac{15}{7}$ As line I has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel I	
Coordinate D = $(-11 - 6.5, 0 - 6)$ = $(-17.5, -6)$ 18f $7y - 3x + 15 = 0$ 7y = 3x - 15 $y = \frac{3}{7}x - \frac{15}{7}$ As line / has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel.	
$= (-17.5, -6)$ 18f $7y - 3x + 15 = 0$ $7y = 3x - 15$ $y = \frac{3}{7}x - \frac{15}{7}$ As line / has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ are the parallel and $\frac{3}{7}$	
$= (-17.5, -6)$ 18f $7y - 3x + 15 = 0$ $7y = 3x - 15$ $y = \frac{3}{7}x - \frac{15}{7}$ As line / has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ a	:
18f $7y - 3x + 15 = 0$ $7y = 3x - 15$ $y = \frac{3}{7}x - \frac{15}{7}$ As line / has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ and $\frac{3}{7}$ are parallel and $\frac{3}{7}$ are paral	
$7y = 3x - 15$ $y = \frac{3}{7}x - \frac{15}{7}$ As line / has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel and the same gradient $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ and $\frac{3}{7}$ are the same gradient $\frac{3}{7}$ as AB, the two lines are parallel and $\frac{3}{7}$ are the parallel and $\frac{3}{7}$ and $$	
$y = \frac{3}{7}x - \frac{15}{7}$ As line / has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel	
As line / has the same gradient $\frac{3}{7}$ as AB, the two lines are parallel	
'	
'	
not meet	and will
19ai	
19aii 86°	
19bi See diagram above	
19bii See diagram above	
19c Draw perpendicular bisector of WX	
It is not possible to so, as the perpendicular bisector of WX, the perpendicular bisector of WX.	
THE BOUNDAMEN IN AU AU AN HIG DISTRIBUTION DISCOUNT IN WATER DATES	ndionlar
bisector of XY, and the angle bisector of WXY do not meet at a single	

Paper 2

Qn	
No.	Solutions
1ai	$2x^2-6x-12$
	$=2(x^2-3x-6)$
	$=2[(x-1.5)^2-2.25-6]$
	$=2[(x-1.5)^2-8.25]$
	$=2(x-1.5)^2-16.5$
1aii	$2x^2 - 6x - 12 = 0$
	$2(x-1.5)^2-16.5=0$
	$2[(x-1.5)^2=16.5$
	$(x-1.5)^2 = 8.25$
	x - 1.5 = 2.87 or $x - 1.5 = -2.87$
	x = 4.37 or $x = -1.37$
1b	3x+1 1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$=\frac{3x+1}{(2x+3)(x+4)}-\frac{1}{x+4}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(2x+3)(x+4) $(2x+3)(x+4)$
	$=\frac{3x+1-2x-3}{6x+3x^2+3x^2}$
	(2x+3)(x+4) $x-2$
	$\frac{-}{(2x+3)(x+4)}$
2	2x + y = 3x + 5y + 3
	$x = -4y - 3 \qquad -(1)$
	4x + 5y - 7 = x + y
	$3x + 4y = 7 \qquad -(2)$
	Sub (1) into (2)
	3(-4y-3) + 4y = 7
	-12y - 9 + 4y = 7
]	-8y = 16
	y = -2
i	Sub $y = -2$ into (1)
	x = -4(-2) - 3

	x = 5
	z - z
3a	(x-3)(2x+8) = -12
	$2x^2 + 8x - 6x - 24 + 12 = 0$
	$2x^2 + 2x - 12 = 0$
	$x^2 + x - 6 = 0$
	(x+3)(x-2)=0
	$x = -3 or \ x = 2$
3b	$\frac{\frac{4}{2x-3} - \frac{3}{x+2} = 1}{2x-3}$
İ	$\begin{vmatrix} 2x-3 & x+2 \\ 4(x+2)-3(2x-3) & 1 \end{vmatrix}$
	$\frac{4(x+2)-3(2x-3)}{(2x-3)(x+2)} = 1$
	4(x+2)-3(2x-3)=(2x-3)(x+2)
	$4x + 8 - 6x + 9 = 2x^2 + x - 6$
	$2x^2 + 3x - 23 = 0$
	$x = \frac{-3 \pm \sqrt{3^2 - 4(2)(-23)}}{2(2)}$
	$x = \frac{-3 \pm \sqrt{193}}{4}$
	x = 2.72 or -4.22
787 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4a	TSA of cone
	$= \pi r^2 + \pi r l$ = $\pi (2y)^2 + \pi (2y)(l)$
	$= \pi(2y)^{-1} + \pi(2y)(t)$ $= 2\pi y(2y+1)$
4b	$TSA ext{ of hemisphere}$
40	
	$=\pi r^2 + \frac{1}{2}(4\pi r^2)$
	$= \pi(3y)^2 + 2\pi(3y)^2$
	$= 9\pi y^2 + 18\pi y^2$
	$=27\pi y^2$
	$2\pi y(2y+l)=27\pi y^2$
	$2y + l = \frac{27y}{2}$
i.	$l = \frac{27y}{2} - 2y$
	$l = \frac{23y}{2}$ or 11.5y
4c	Vol of hemisphere
,	$\frac{1}{2} \left(\frac{4}{3} \pi r^3 \right) = 729$
	$\frac{2}{3}\pi(3y)^3 = 729$
	$18\pi y^3 = 729$
	y = 2.3448

	height of cone = $\sqrt{(l^2 - r^2)}$
	$=\sqrt{\left(\left(\frac{23}{2}(2.3448)^2\right)^2-(2\times2.3448)^2\right)}$
	= 26.554 cm
	Vol of cone = $\frac{1}{3}\pi r^2 h$
	$=\frac{1}{3}(\pi)(2\times 2.3448)^2(26.554)$
	$= 611.547 \approx 612cm^3 \ (to \ 3s. f.)$
5a	2: 100000 1: 50000
5b	1 cm : 50000 cm
	1 cm: 0.5 km
	Area 1 cm ² : 0.25 km ²
	456 cm ² : 114 km ²
#2 77 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	
6ai	sin ABE
	$=\sin EBC$
	$\frac{2}{\sqrt{8}}$
6aii	cos ABE
	$=-\cos EBC$
	$=-\frac{3}{\sqrt{8}}$
6b	$Area = \left(\frac{1}{2}\right)(AB)(BE)sinABE$
	$= \left(\frac{1}{2}\right) (4) \left(\sqrt{8}\right) \left(\frac{2}{\sqrt{8}}\right)$
	$= 4 \text{ cm}^2$
6c	$\frac{AB}{AC} = \frac{4}{7}$
	$\frac{Area\ ABE}{Area\ ACD} = \frac{16}{49}$
	Area ACD 49
	Area $ABE = 4 \div 16 \times 49 = 12.25 \text{ cm}^2$
7a	When $x = -10$,
1	$y = -10 - \frac{4}{(-10)^2} = -10.0$

•	Sub (2) into (1):					
	$2\left(x - \frac{4}{r^2}\right) - 2x = -7$					
	$2x - \frac{8}{x^2} - 2x = -7$					
	$-\frac{8}{x^2} = -7$					
	$8 = 7x^2$					
	$7x^2 - 8 = 0$					
	A = 7, B = -8					
100 100						
8a	$\angle POQ = 180^{\circ} - 60^{\circ} = 120^{\circ}$					
	$\angle OQP = \frac{180^{\circ} - 120^{\circ}}{2} = 30^{\circ} \text{ (base } \angle \text{ of iso } \triangle)$					
	$\angle TQP = 90^{\circ} - 30^{\circ} = 60^{\circ}$					
8b	$\angle PRQ = \frac{120^{\circ}}{2} = 60^{\circ} \ (\angle \text{ at centre} = 2 \ \angle \text{ at circumference})$					
8c	$OPR = 180^{\circ} - 60^{\circ} - 20^{\circ} - (2 \times 30^{\circ}) = 40^{\circ} \text{ (sum of } \angle \text{ of } \triangle)$					
8d	Obtuse $\angle QOP = 360^{\circ} - 120^{\circ} = 240^{\circ}$					
	Area of major sector $=\frac{240^{\circ}}{360^{\circ}} \times \pi(5)^2 = \left(\frac{50}{3}\pi\right) cm^2$					
	Area of $\triangle POQ = \frac{1}{2}(5)(5) \sin 120^{\circ} = 10.825$					
	Total Area = $63.2 cm^2$					
	101111111111111111111111111111111111111					
9a	$Length = \sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$					
9a						
	Length = $\sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ = $\sqrt{(-2)^2 + 5^2}$ = 5.39					
9a 9b	Length = $\sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ = $\sqrt{(-2)^2 + 5^2}$					
	Length = $\sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ = $\sqrt{(-2)^2 + 5^2}$ = 5.39					
	$Length = \sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ $= \sqrt{(-2)^2 + 5^2}$ $= 5.39$ $m_{AB} = m_{CD} = \frac{-2 - (-7)}{-6 - (-4)} = \frac{5}{-2}$ $\overrightarrow{OC} = \overrightarrow{BC} + \overrightarrow{OB}$					
	$Length = \sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ $= \sqrt{(-2)^2 + 5^2}$ $= 5.39$ $m_{AB} = m_{CD} = \frac{-2 - (-7)}{-6 - (-4)} = \frac{5}{-2}$ $\overrightarrow{OC} = \overrightarrow{BC} + \overrightarrow{OB}$ $= {8 \choose -2} + {-4 \choose -7}$					
	$Length = \sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ $= \sqrt{(-2)^2 + 5^2}$ $= 5.39$ $m_{AB} = m_{CD} = \frac{-2 - (-7)}{-6 - (-4)} = \frac{5}{-2}$ $\overrightarrow{OC} = \overrightarrow{BC} + \overrightarrow{OB}$ $= {8 \choose -2} + {-4 \choose -7}$ $= {4 \choose -9}$					
	$Length = \sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ $= \sqrt{(-2)^2 + 5^2}$ $= 5.39$ $m_{AB} = m_{CD} = \frac{-2 - (-7)}{-6 - (-4)} = \frac{5}{-2}$ $\overrightarrow{OC} = \overrightarrow{BC} + \overrightarrow{OB}$ $= {8 \choose -2} + {-4 \choose -7}$					
	$Length = \sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ $= \sqrt{(-2)^2 + 5^2}$ $= 5.39$ $m_{AB} = m_{CD} = \frac{-2 - (-7)}{-6 - (-4)} = \frac{5}{-2}$ $\overrightarrow{OC} = \overrightarrow{BC} + \overrightarrow{OB}$ $= {8 \choose -2} + {-4 \choose -7}$ $= {4 \choose -9}$					
	$Length = \sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ $= \sqrt{(-2)^2 + 5^2}$ $= 5.39$ $m_{AB} = m_{CD} = \frac{-2 - (-7)}{-6 - (-4)} = \frac{5}{-2}$ $\overrightarrow{OC} = \overrightarrow{BC} + \overrightarrow{OB}$ $= {8 \choose -2} + {-4 \choose -7}$ $= {4 \choose -9}$ $C(4, -9)$					
	Length = $\sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ = $\sqrt{(-2)^2 + 5^2}$ = 5.39 $m_{AB} = m_{CD} = \frac{-2 - (-7)}{-6 - (-4)} = \frac{5}{-2}$ $\overrightarrow{OC} = \overrightarrow{BC} + \overrightarrow{OB}$ = $\binom{8}{-2} + \binom{-4}{-7}$ = $\binom{4}{-9}$ C(4, -9) y = -2.5x + c					
	Length = $\sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ = $\sqrt{(-2)^2 + 5^2}$ = 5.39 $m_{AB} = m_{CD} = \frac{-2 - (-7)}{-6 - (-4)} = \frac{5}{-2}$ $\overrightarrow{OC} = \overrightarrow{BC} + \overrightarrow{OB}$ = $\binom{8}{-2} + \binom{-4}{-7}$ = $\binom{4}{-9}$ C(4, -9) y = -2.5x + c -9 = -2.5(4) + c					
	$Length = \sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ $= \sqrt{(-2)^2 + 5^2}$ $= 5.39$ $m_{AB} = m_{CD} = \frac{-2 - (-7)}{-6 - (-4)} = \frac{5}{-2}$ $\overrightarrow{OC} = \overrightarrow{BC} + \overrightarrow{OB}$ $= {8 \choose -2} + {-4 \choose -7}$ $= {4 \choose -9}$ $C(4, -9)$ $y = -2.5x + c$ $-9 = -2.5(4) + c$ $c = 1$					
9b	$Length = \sqrt{[-6 - (-4)]^2 + [-2 - (-7)]^2}$ $= \sqrt{(-2)^2 + 5^2}$ $= 5.39$ $m_{AB} = m_{CD} = \frac{-2 - (-7)}{-6 - (-4)} = \frac{5}{-2}$ $\overrightarrow{OC} = \overrightarrow{BC} + \overrightarrow{OB}$ $= {8 \choose -2} + {-4 \choose -7}$ $= {4 \choose -9}$ $C(4, -9)$ $y = -2.5x + c$ $-9 = -2.5(4) + c$ $c = 1$ $y = -\frac{5}{2}x + 1 \text{ or } 2y = -5x + 2$					

	$=\frac{1}{2}\left[\binom{4}{-9}-\binom{-6}{-2}\right]$					
	$= {5 \choose -7/2}$					
9cii	$\overrightarrow{OX} = \overrightarrow{OC} - \overrightarrow{XC}$					
	$= \binom{4}{-9} - \binom{5}{-7/2}$					
	$= \begin{pmatrix} -1 \\ -11/2 \end{pmatrix}$					
9d	$\frac{2}{3}$ or 2:1					
10a	$(35 \times 20) + (45 \times 39) + (55 \times 16) + (65 \times 20) + (75x)$					
	= 50.1(20 + 39 + 16 + 20 + x)					
	4635 + 75x = 50.1(95 + x)					
	4635 + 75x = 4759.5 + 50.1x					
	24.9x = 124.5					
	x = 5					
10b	Std Deviation = 11.6 min					
10c	The male participants ran faster than the females participants as their mean time was shorter.					
	to the design of					
	The <u>female participants</u> were more consistent in their running speed as their standard					
	deviation was lesser than that of the males.					
11a	$T_5 = 7^2 + 17 = 66$					
11a	The sum of 2 odd numbers or the sum of 2 even numbers will always be an even number.					
1110						
11c	$T_n = (n+2)^2 + 5 + 3(n-1)$					
11c	$T_n = (n+2)^2 + 5 + 3(n-1)$ = $n^2 + 4n + 4 + 5 + 3n - 3$					
	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$					
11c	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$					
	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$					
	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$					
11d	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$					
	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$ $2p + 8 = 4$					
11d	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$ $2p + 8 = 4$ $2p = -4 \Rightarrow p = -2$					
11d	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$ $2p + 8 = 4$					
11d	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$ $2p + 8 = 4$ $2p = -4 \Rightarrow p = -2$					
11d	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$ $2p + 8 = 4$ $2p = -4 \Rightarrow p = -2$					
11d	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$ $2p + 8 = 4$ $2p = -4 \Rightarrow p = -2$ Since p cannot be negative, consecutive terms of the sequence cannot have a difference of 4. Let X be North of H Angle $PHX = 360^\circ - 306^\circ = 54^\circ$					
11d	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$ $2p + 8 = 4$ $2p = -4 \Rightarrow p = -2$ Since p cannot be negative, consecutive terms of the sequence cannot have a difference of 4. Let X be North of H Angle $PHX = 360^\circ - 306^\circ = 54^\circ$ Bearing of H from $P = 180^\circ - 54^\circ = 126^\circ$ (int angles)					
11d	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$ $2p + 8 = 4$ $2p = -4 \Rightarrow p = -2$ Since p cannot be negative, consecutive terms of the sequence cannot have a difference of 4 . Let X be North of H Angle $PHX = 360^\circ - 306^\circ = 54^\circ$ Bearing of H from $P = 180^\circ - 54^\circ = 126^\circ$ (int angles) Bearing of L from $P = 126^\circ + 124^\circ = 250^\circ$					
11d 11e	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$ $2p + 8 = 4$ $2p = -4 \Rightarrow p = -2$ Since p cannot be negative, consecutive terms of the sequence cannot have a difference of 4 . Let X be North of H Angle $PHX = 360^\circ - 306^\circ = 54^\circ$ Bearing of H from $P = 180^\circ - 54^\circ = 126^\circ$ (int angles) Bearing of L from $P = 126^\circ + 124^\circ = 250^\circ$					
11d 11e 12ai	$T_n = (n+2)^2 + 5 + 3(n-1)$ $= n^2 + 4n + 4 + 5 + 3n - 3$ $= n^2 + 7n + 6$ $T_{p+1} - T_p$ $= (p+1)^2 + 7(p+1) + 6 - [p^2 + 7p + 6]$ $= p^2 + 2p + 1 + 7p + 7 + 6 - p^2 - 7p - 6$ $= 2p + 8$ $2p + 8 = 4$ $2p = -4 \Rightarrow p = -2$ Since p cannot be negative, consecutive terms of the sequence cannot have a difference of 4 . Let X be North of H Angle $PHX = 360^\circ - 306^\circ = 54^\circ$ Bearing of H from $P = 180^\circ - 54^\circ = 126^\circ$ (int angles) Bearing of L from $P = 126^\circ + 124^\circ = 250^\circ$					

12b	$HL^2 = 2.5^2 + 3^2 - 2(2.5)(3)\cos 124^\circ$						
	HL = 4.86 km						
12c	Let X be the point where LX is the shortest distance to HPQ $\cos 56^{\circ} = \frac{XP}{2.5}$ XP = 1.39798						
	$HX = 1.39798 + 3 = 4.39798$ $Time = \frac{4397.98 \text{ m}}{4.5 \text{ m/s}} = 977.33 \text{ s} = 16.289 \text{ min}$ It left harbour at 0753 hours						
ansanti in LS							
10							
13a	$\frac{3}{4} \times 0.88 = 0.66 \text{ (shown)}$ $\frac{1}{2} \times 0.88 = 0.44 \text{ (shown)}$						
13b	$0.5 \times 0.5 \times 0.22 \times 0.9 \\ = 0.0495$						
13c	Time	Color	Target Size	Probability (Hit + Capture)			
:	0s	Red	2	Target 2 = $0.66 \times 0.8 \times 0.4 \times 0.7 = 0.14784$			
	1s	Green	3	Target 3 = $0.44 \times 0.95 \times 0.9 \times 0.7 = 0.26334$			
	2s	Yellow	4	Target 4 = $0.22 \times 0.5 \times 0.7 \times 0.7 = 0.0539$			
	3s	Orange	1	Target 1 = $0.88 \times 0.7 \times 0.5 \times 0.7 = 0.2156$			
	∴ Maximum probability happens at green Target 2						
	Sam should wait for 1 second for the target to change from red Target 2 to green 3, with maximum probability of 0.26334 ∴						
1.1.00			opratizationejan				