Class	Index Number	Candidate Name

ANG MO KIO SECONDARY SCHOOL FINAL EXAMINATION 2018 SECONDARY THREE EXPRESS

MATHEMATICS

Paper 1

4048/01

Monday

08 October 2018

2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

This document consists of 16 printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curve surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector Area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1	(a)	Simplify $5x-2(3x-7)$.
	(b)	Answer [1] Factorise completely $6x^2 + 20x - 16$.
		Answer [2]
2	The different, (a)	iameter of a spherical organism is 807 micrometres. Giving your answers in standard express 807 micrometres in metres,
		Answer m [1]
	(b)	find the surface area, in square metres, of the spherical organism. [1 micrometre = 10^{-6} metres]
		Answer m ² [2]

AMKSS 3E FE

4048/01/2018

3	The 1 (a)	first four terms of a sequence are 7, 12, 17 and 22. Write down the 6 th term of the sequence.
		Answer [1]
	(b)	Find an expression, in terms of n , for the n th term of the sequence.
		Answer [1]
	(c)	Explain why 200 is not a term of this sequence.
		Answer [1
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4		volume of air, $V \text{ cm}^3$, inside an air pump is inversely proportional to the cube root of the ressure, $P \text{ Pa}$. When 15 cm ³ of air is pumped, the air pressure reaches 2744 Pa.
	(a)	an equation connecting V and P ,
		Answer [2]
	(b)	the air pressure when 21 cm ³ of air is pumped.
		Answer Pa [2]

4048/01/2018

[Turn Over

AMKSS 3E FE

5 Solve

(a)
$$\frac{p}{6} - \frac{3(2-p)}{4} = 1$$
,

Answer
$$p =$$
 [2]

(b)
$$\frac{1}{x} + \frac{3}{x-1} + \frac{2}{x+1} = 0$$
.

Answer
$$x =$$
 [3]

AMKSS 3E FE

4048/01/2018

(a)	Express $x^2 - 6x + 7$ in the form $(x - p)$	$^{2}-q$.		
	Ans	wer		[2
(b)	Hence write down the minimum value of	of $x^2 - 6$	6x+7.	
	Ans	wer		[
(c)	Write down the equation of the line of s	symmet	ry of the graph of $y = x^2 - 6x + 7$.	
	Ans	wer	······	[]
Lind	la is offered a choice of the following rates	of pay	per week.	
	Rate A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\mathbf{Rate}^{\mathcal{B}_{\mathbf{a},\mathbf{b}}^{\mathbf{a},\mathbf{c}}} = \mathbf{Rate}^{\mathcal{B}_{\mathbf{a},\mathbf{b}}^{\mathbf{a},\mathbf{c}}} \hat{\mathbf{b}}_{\mathbf{a},\mathbf{b}}^{\mathbf{a},\mathbf{c}} \hat{\mathbf{b}}_{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}} \hat{\mathbf{b}}_{\mathbf{c},\mathbf{c}}^{\mathbf{a},\mathbf{c}} \hat{\mathbf{b}}_{\mathbf{c},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}} \hat{\mathbf{c}}_{\mathbf{c},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{\mathbf{a},\mathbf{c}}^{a$	
	\$15 per hour up to 40 hours	\$18.5	0 per hour up to 30 hours	
	\$12 per hour for the remaining hours	\$5 per	$\frac{1}{2}$ hour for the remaining hours	
	nda works 55 hours a week, which pay rat w your working clearly in the space provid		l be a better choice?	
Ansv	wer Linda should choose Rate	becau	se	
		becau	se	

4048/01/2018

[Turn Over

AMKSS 3E FE

8 The diagram shows triangle PQR with coordinates P(-8, 0), Q(10, 0) and R(-5, 9). The line QR cuts the y-axis at the point S.

Find

(a) the length of QR,

(b) the equation of the line QR,

(c) the coordinates of S,

(d) the area of quadrilateral OPRS.

Answer	 [2]

AMKSS 3E FE

4048/01/2018

9	(a)	Simplify
7	(a)	эшіршу

(i)
$$\frac{1}{5}x^3 \times \left(-3xy\right)^2,$$

Answer	 [2]

(ii)
$$a^{\frac{5}{3}} \div \sqrt[3]{a^2}$$
.

(b) Solve
$$7^{2x-1} \times 49^x = 1$$
.

Answer
$$x =$$
 [3]

AMKSS 3E FE

4048/01/2018

[2]

Sketch the graph of y = -(x+5)(x-3) on the axes below. Indicate clearly the values where the graph crosses the x- and y- axes.

- Written as the product of its prime factors, $1350 = 2 \times 3^3 \times 5^2$.
 - (a) Express 540 as the product of its prime factors.

Answer [1]

(b) Find the smallest positive integer m such that 1350m is a perfect cube.

Answer [1]

(c) Write down the greatest integer that will divide both 1350 and 540 exactly.

Answer [1]

AMKSS 3E FE

4048/01/2018

12	An open field has an area of 27 km ² . It is represented by an area of 3 cm ² on map X .					
	(a)	Find the scale of map X in the form	m 1 : <i>n</i> .			
				,		
			Answer		[2]	
	(b)	A road is measured 2.4 cm on map road on map Y if map Y has a scale		centimetres, the length representing to 000.	his	
			Answer	cm	[2]	
13	A vel	nicle travels 2w km in 10 minutes. F	ind its spee	d in km/h, leaving your answer in term	ns	
			Answer	km/h	[2]	
	MKSS 3E	FF 40	048/01/2018	[Turn Ove	•r	

PartnerInLearning 218

In the diagram below, AB = 18 cm, BC = 7.5 cm, CD = 16.5 cm, AD = 30 cm and BCD is a straight line.

(a) Show that $\triangle ABD$ is a right-angled triangle.

Answer	
	[2]

(b) Givng your answer as a fraction, find the exact value of

(i)	sin	$\angle ADB$,

(ii) $\cos \angle ACD$.

Answer	[2]

AMKSS 3E FE

4048/01/2018

15 In the diagram, GH = LK = 4 cm, HJ = 20 cm, HL = 6 cm and GL = 8 cm.

(a) Show that $\triangle GJK$ is similar to $\triangle GLH$.

Answer	***************************************	
		[2]
************	045114410104811984998011110111101411110101111111111	

(b) Find JK.

Answer	JK	=	cm	[2

AMKSS 3E FE

4048/01/2018

The diagram below shows two open troughs that are geometrically similar. The ratio of the base areas of the two troughs is 9: 4. Both troughs are filled with sand to the brim. The mass of sand in the smaller trough is 3.2 kg. Find the mass of sand in the larger trough.

Answer		kg	[3]
--------	--	----	-----

17 In the figure below, ABCDEF is a regular hexagon and HBC is a straight line.

Find the value of

(a) p,

Answer
$$p =$$
 [1]

(b) q,

Answer
$$q =$$
 [1]

(c) r.

Answer
$$r = [1]$$

AMKSS 3E FE

4048/01/2018

18 The diagram below shows a speed-time graph of a moving particle over a period of 12 seconds.

(a) Find the acceleration of the particle in the first 3 seconds.

Answer		m/s^2	[1]
--------	--	---------	-----

(b) If the particle moved a total distance of 100 m, calculate its speed v, at t = 12 seconds.

Answer m/s [3]

(c) Use the grid below to sketch the distance-time graph for the 12 seconds.

[3]

AMKSS 3E FE

4048/01/2018

19 In $\triangle ADC$, BE is parallel to CD, $\angle BCD = 71^{\circ}$, $\angle DBE = 53^{\circ}$, and $\angle BDE = 21^{\circ}$.

Calculate

(a) $\angle CDB$,

Answer
$$\angle CDB = \circ [1]$$

(b) $\angle CBD$,

Answer
$$\angle CBD =$$
 [2]

(c) reflex $\angle DAB$.

AMKSS 3E FE

4048/01/2018

The diagram shows a quadrant of a circle POR with centre O and radius 6 cm. Q is a point such that QR is parallel to PO and $\angle PQR = 45^{\circ}$.

(a)	Explain why $QR = 12$ cm.	
	Answer	

		F13

(b) Find the area of the shaded region. Give your answer in the form $a - b\pi$.

Answer		cm^2	[2]
	A		

END OF PAPER

AMKSS 3E FE

4048/01/2018

PartnerInLearning 224

More papers at www.testpapersfree.com

Class	Index Number	Name

ANG MO KIO SECONDARY SCHOOL **FINAL EXAMINATION 2018** SECONDARY THREE EXPRESS

MATHEMATICS

4048/02

Paper 2

Setter: Mrs Koh Hui Teng

Thursday

04 October 2018 2 hours 30 minutes

Additional Materials:

Answer Paper Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

This document consists of 10 printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$
Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

AMKSS 3E FE

4048/02/2018

Answer all the questions.

1 (a) Simplify, leaving your answers as positive indices where necessary,

(i)
$$(a^{\frac{2}{5}})^{10} \div (a^{\frac{1}{3}})^{6}$$
, [2]

(ii)
$$\left(81m^{-6}\right)^{\frac{1}{2}}$$
, [2]

(iii)
$$\frac{x^4 - x^2}{x^2 - x}$$
. [2]

(b) Solve the equations

(i)
$$x^{-\frac{2}{3}} = \frac{1}{4}$$
, [2]

(ii)
$$243^{x+7} = 27^{x-1}$$
. [3]

(c) (i) Solve the inequality
$$\frac{3}{4}x - 23 < 5 - x \le x - 10$$
. [2]

- (ii) State the smallest prime number which satisfies the above inequality. [1]
- 2 (a) Mr and Mrs Lee open separate bank accounts.
 - (i) Mr Lee deposits \$1000 in his account. This account pays simple interest at the rate of 4% per year. Calculate the total amount in his account after 3 years. [2]
 - (ii) Mrs Lee deposits \$1000 in her account. This account pays compound interest at the rate of 4% per year. Find the difference of money in both their accounts after 3 years.
 - (b) The cash price of a new laptop is \$2400. Andy buys this laptop on hire purchase. He pays a deposit of one third of the cash price followed by 24 monthly instalments of \$72.50. Calculate the total amount that Andy will pay for the computer. [2]
 - (c) The exchange rate between Euros (€) and Singapore dollars (S\$) was €1 = S\$1.56.
 Tammy bought a wallet from an online shop for €298 after 20% discount. Find the original price of the wallet in Singapore dollars.

- 3 The Nature Society chartered an air-conditioned bus for \$1500 to take a group of x members to Malaysia for a trekking trip. It was agreed that each member of the group would pay an equal share of this transport fee.
 - (a) Write down an expression, in terms of x, for the amount of money each member of the group had to pay. [1]

On the day of departure, three members of the group could not make it for the trip. The Nature Society decided that it would contribute \$140 from its funds and that the balance of the transport fee was to be shared equally by the remaining members.

- (b) Write down an expression, in terms of x, for the amount which each remaining member had to pay after the three members had withdrawn from the trip. [1]
- (c) As a result of the three members withdrawing from the trip, the amount each member had to pay was \$5 more than the initial amount.

 Form an equation in x and show that it reduces to

$$x^2 + 25x - 900 = 0. ag{3}$$

- (d) Solve the equation $x^2 + 25x 900 = 0$. [3]
- (e) Find the transport fee that each member had to pay initially. [2]
- 4 (a) It is given that $2c = \sqrt[3]{\frac{e^2}{d}}$.

Find c when
$$d = 3$$
 and $e = 9$. [1]

(ii) Express
$$e$$
 in terms of c and d . [2]

(b) Factorise completely
$$16a^2 - 10ab - 8a + 5b$$
. [2]

(c) Express as a single fraction in its simplest form
$$\frac{2}{x-3} - \frac{x+3}{2x^2 - 5x - 3}$$
. [3]

(d) Solve the simultaneous equations

$$3x - 5y = 31,$$

 $x + 3y = 1.$ [3]

Diagram I

Diagram II

Diagram I shows a spinning top made by joining together a cylinder and a cone with base radius 6 cm. The height of the cylinder is 2 cm and the vertical height of the cone is 8 cm. Diagram II shows a vertical cross-section of the cone.

(a) Find the slant height of the cone. [2]
(b) Leaving your answers in terms of π, calculate

(i) the volume of the top,
(ii) the total surface area of the top.

[3]

Each complete spin made by point *P* along the circumference of the cylinder is taken to be 1 revolution. The top spins at 3 revolutions per second.

(c) Calculate the distance, in cm, moved by the point P in 1 minute. [2]

AMKSS 3E FE

4048/02/2018

6 Answer the whole of this question on a sheet of graph paper.

The table below shows some values of x and the corresponding values of y, correct to the nearest whole number, where

$$y = 2x^2 + \frac{80}{x} - 30.$$

x	1	2	3	4	5	6	8
у	52	18	15	22	р	55	108

(a) Find the value of p.

AMKSS 3E FE

[1]

- Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for 0 ≤ x ≤ 8.
 Using a scale of 2 cm to represent 10 units, draw a vertical y-axis for 0 ≤ y ≤ 110.
 On your axes, plot the points given in the table and join them with a smooth curve. [3]
- (c) Use your graph to find the values of x for which y = 20. [2]
- (d) By drawing a tangent, find the gradient of the curve at (4, 22). [2]
- (e) Use your graph to find solutions to the equation $2x^2 20x + \frac{80}{x} 30 = 0$ in the range $0 \le x \le 8$.

4048/02/2018

In the diagram, AB is parallel to FC and GF is parallel to BE. Given that BC = CD = DE and GB = 6 cm.

- (a) Show that $\triangle PCD$ is congruent to $\triangle PFG$. [2]
- (b) Name another triangle that is similar to $\triangle PCD$. [1]
- (c) Calculate the length of PC. [2]
- (d) Write down the numerical value of

(i)
$$\frac{\text{area of } \Delta FCD}{\text{area of } \Delta FCE}$$
, [1]

(ii) $\frac{\text{area of } \Delta AGF}{\text{area of trapezium } GBEF}$. [1]

AMKSS 3E FE

The diagram shows a straight path ACD running from A in a direction 060° . A building at B is 70 m due south of A. AC = 95 m and BD = 180 m.

Calculate (a)

AMKSS 3E FE

(i)	the distance BC,	[3]
(ii)	the bearing of D from B .	[3]

- Given that from D, the angle of elevation of the top of the building that stands at B is **(b)** [2] 24°, calculate the height of the building.
- [3] Calculate the area of $\triangle BCD$, giving your answer correct to the nearest m². (c)

4048/02/2018

The diagram shows an open fish tank, constructed by removing a portion of the cylinder of radius 10 cm and length 20 cm. The cross-section APC of the tank is the major segment of the circle centred at O and angle AOC = 1.2 rad.

Find

(a)	the length of the major arc APC,	[2]
(b)	the area of the major segment APC,	[3]
(c)	the total volume of the fish tank,	[2]
(d)	the total external surface area of the fish tank.	[3]

10 Container ships are cargo ships that carry all of their load in truck-size intermodal containers. They are a common means of commercial intermodal freight transport. Below is an example of a container ship:

Name: MSC Beatrice Length: 366 m Breadth: 51 m Capacity: 14 000 TEU

Cost of diesel fuel per litre: US\$1.63

Diesel consumption per year without retractable sails: Approximately 3 600 000 litres

(a) Calculate the cost of diesel consumption in a year.

[1]

(b) TEU stands for Twenty-Foot Equivalent Unit which can be used to measure a ship's cargo carrying capacity. The dimensions of one TEU are equal to that of a standard shipping container measuring 2.44 m by 2.17 m by 2.17 m.

Calculate the total volume of the maximum number of containers MSC Beatrice can carry in cubic metres.

[2]

(c) Due to high diesel fuel costs, the owners of MSC Beatrice decide to equip giant, retractable sails on their ship. They can be used to maximise wind energy while simultaneously cutting down on fuel consumption.

Useful Information

- Cost of equipping retractable sails: \$ 2,800,000
- Estimated to reduce diesel consumption by 20%
- (i) Calculate the cost of diesel consumption in a year, after equipping retractable sails.

[2]

(ii) The owners expect to recover the cost of equipping retractable sails by the end of 2 years.

Do you think this is possible? Justify your answer by showing your workings clearly.

[3]

END OF PAPER

AMKSS 3E FE

4048/02/2018

PartnerInLearning 234

AMKSS FE 2018 3E EM P1 Marking Scheme

1 mark deducted from whole paper if answers to fractions were not reduced to lowest term and mixed fractions.

1 mark deducted from whole paper for answers not given to 3 significant figures. (Q5a)

Qn	Answers	Marks
1a	5x-2(3x-7)	
	=5x-6x+14	
	=-x+14	B1
1b	$6x^2 + 20x - 16$	
	$=2\left(3x^2+10x-8\right)$	M1
	=2(3x-2)(x+4)	A1
2a	$8.07 \times 10^{-4} \mathrm{m}$	B1
2b	$4\pi \left(\frac{8.07 \times 10^{-4}}{2}\right)^2$	M1
	$= \pi \times 65.1249 \times 10^{-8}$ $= 204.5959074 \times 10^{-8}$	
	$= 2.05 \times 10^{-6} \text{ m}^2$	A1
3a	32	B1
3b	5n+2	B1
3c	200 = 5n + 2	
	5n = 198	
	n = 39.6	
	n must be an integer	
	OR 198 is not a multiple of 5	В1
4 a	$V = \frac{k}{\sqrt[3]{P}}$	
	$15 = \frac{k}{\sqrt[3]{2744}}$	
	k=210	M1
	$V = \frac{210}{\sqrt[3]{P}}$	A1
4b	$\sqrt[3]{P} = \frac{210}{21} = 10$	M1
	$ \begin{array}{c c} 21 \\ P = 10^3 = 1000 \text{ Pa} \end{array} $	A1

		1
5a	$\frac{p}{6} - \frac{3(2-p)}{4} = 1$	
	$\frac{2p-3(6-3p)}{12}=1$	
	11p - 18 = 12	M1
	11p = 30	
	$p=2\frac{8}{11}$	A1
	11	Ai
5b	$\frac{1}{x} + \frac{3}{x-1} + \frac{2}{x+1} = 0$	
	$\frac{3(x+1)+2(x-1)}{x^2-1} = -\frac{1}{x}$	M1
	,	
	$\frac{5x+1}{x^2-1} = -\frac{1}{x}$	
	$\begin{vmatrix} x^2 - 1 & x \\ 5x^2 + x = -x^2 + 1 \end{vmatrix}$	
	$6x^2 + x - 1 = 0$	M1
		1411
	(3x-1)(2x+1) = 0	·
	$x = \frac{1}{3}$ or $-\frac{1}{2}$	nd family makes
	3 2	A1
6a	x^2-6x+7	
		M1
	$=x^2-6x+\left(\frac{3}{2}\right)-\left(\frac{3}{2}\right)+7$	de constante de la constante d
	$= x^{2} - 6x + \left(\frac{6}{2}\right)^{2} - \left(\frac{6}{2}\right)^{2} + 7$ $= (x - 3)^{2} - 2$	A1
		or B2
6b	_2	B1
6c	x = 3	B1
7	Rate A	A CONTRACTOR OF THE CONTRACTOR
	$(15\times40)+(12\times15)$	**************************************
	=\$780	M1
	Rate B	I IVI I
	$(18.5 \times 30) + (10 \times 25)$	
	=\$805	
	Linda should choose Rate <u>B</u> because she will get \$25 more.	A1, A1
	- VIII 1901 420 111010.	<u> </u>

8a	$QR = \sqrt{(10+5)^2 + (0-9)^2}$	Ml
	$=\sqrt{306}$	
	=17.4928556845	
	=17.5 units	A1
8b	$m = \frac{0 - 9}{10 - (-5)}$	
	$=\frac{-9}{15}=-\frac{3}{5}$	M1
And the second s	$0 = -\frac{3}{5}(10) + c$	
	c=6	·
	$c = 6$ $\Rightarrow y = -\frac{3}{5}x + 6$	A1
8c	S(0, 6)	B1
8d	$\frac{1}{2}(3)(9) + \frac{1}{2}(9+6)(5)$	M1
	$=\frac{27}{2}+\frac{75}{2}$	
	2 2	
	= 51 units ²	A1
OR	$\Delta RPQ - \Delta SOQ$	
	=81-30	*
9ai	= 51 units ²	
761	$\left(\frac{1}{5}x^3\times(-3xy)^2\right)$	
	$\frac{1}{5}x^3 \times (-3xy)^2$ $= \frac{1}{5}x^3 \times 9x^2y^2$ $= \frac{9}{5}x^5y^2$	M1
	$= \frac{9}{5}x^5y^2$	Al
9aii	$a^{\frac{5}{3}} \div \sqrt[3]{a^2}$	
	$a^3 \div \sqrt[3]{a^2}$	M1 for
47	$=a^{\frac{5}{3}} \div a^{\frac{2}{3}}$	fractional index
	$=a^{\frac{5-2}{3}}=a$	A1
9b	$7^{2x-1} \times 49^x = 1$	M1 for zero
	$7^{2x-1}\times\left(7^2\right)^x=7^0$	index
	2x-1+2x=0	M1
	4x=1	Party spring and sprin
	$x = \frac{1}{4}$	A1
	ਰ	

10	(-1, 16) 15 0 3	B1 for correct shape & y intercept B1 For correct x intercepts
11a	$2^2 \times 3^3 \times 5$	B1
11b	$m = 2^2 \times 5 = 20$	B1
11c	$HCF = 2 \times 3^3 \times 5 = 270$	B1
12a	3 cm ² : 27 km ² 1 cm ² : 9 km ² 1 cm: 3 km 1: 300000	M1 A1
12b	$\frac{\text{Map } X}{2.4 \text{ cm} : 7.2 \text{ km}}$ $\frac{\text{Map } Y}{1 : 400000}$ $1 \text{ cm} : 4 \text{ km}$ $\text{Length of road} = 7.2 \div 4 = 1.8 \text{ cm}$	M1
13	$2w \div \frac{1}{6}$ = 12w km/h	M1 A1
14a	$AB^{2} = 18^{2} = 324$ $BD^{2} = (7.5 + 16.5)^{2} = 576$ $AD^{2} = 30^{2} = 900$ $AB^{2} + BD^{2} = 324 + 576 = 900$	M1
	Since $AB^2 + BD^2 = AD^2$ By Pythagoras' Theorem $\triangle ABD$ is a right-angled \triangle	M1
14bi	$\frac{18}{30} = \frac{3}{5}$	B1

14bii	$AC = \sqrt{18^2 + 7.5^2} = 19.5 \text{ cm}$	M1
	·	M1
	$\cos \angle ACB = \frac{7.5}{19.5} = \frac{5}{13}$ $\cos \angle ACD = -\frac{5}{13}$	
	$\cos \angle ACD = -\frac{5}{2}$	A1
15a		
134		3.71
	$\frac{GL}{GJ} = \frac{8}{24} = \frac{1}{3}$	M1
	$\frac{GH}{GK} = \frac{4}{12} = \frac{1}{3}$	
	GK = 12 - 3	
	ΔGJK is similar to ΔGLH (2 ratios of corr. sides and included \angle equal)	M1 for
15b	or (SAS) LH 1	stating test
	$\frac{LH}{JK} = \frac{1}{3}$	M1
	$JK = 3 \times 6$	
16	=18 cm	A1
10	$\frac{l_1}{l_2} = \sqrt{\frac{9}{4}} = \frac{3}{2}$	М1
	$\frac{V_1}{V_2} = \frac{27}{8} = \frac{m_1}{3.2}$	M1
	$m_1 = \frac{27 \times 3.2}{8} = 10.8 \text{ kg}$	Al
17a	$\frac{360}{6} = 60^{\circ}$	B1
17b	180-60=120°	B1
170	100-00-120	D 1
17c	$\frac{60}{2} = 30^{\circ}$	B1
18a		
_ _	$\frac{10.5}{4} = 2.625 \text{ m/s}^2$	
		B1
18b	$\frac{1}{2}(4\times10.5) + (6\times10.5) + \frac{1}{2}(2)(10.5 + \nu) = 100$	M1 (Δ area),
	-	M1 (trapezium)
	21+63+10.5+v = 100 v = 5.5 m/s	A1
	v — 5.5 mus	

18c	Distance (m)	A1 (0-4)
	100 84 21 0 4 10 12 Time (s)	A1 (4-10) A1 (10-12) Minus 1M if no distance labelled on axis
19a	$\angle CDB = 53^{\circ} \text{ (alt } \angle \text{s)}$	B1
19b	$\angle CBD = 180 - 71 - 53 \text{ (interior } \angle s)$ = 56°	M1 A1
19c	$\angle DAB = 56 - 21 \text{ (ext } \angle \text{ of } \Delta)$ = 35° Reflex $\angle DAB = 360 - 35 \text{ (} \angle \text{s at a pt)}$ = 325°	M1
20a	Let PX be perpendicular to QR . ΔPQX is an isosceles triangle $\Rightarrow QX = PX = 6$ cm $\Rightarrow QR = 12$ cm	M1 for stating isosceles Δ
20b	Area of shaded region = $\frac{1}{2}(6+12)(6) - \frac{1}{4}\pi(6)^2$ = $(54-9\pi)$ cm ²	M1 A1

AMKSS 3E MATHEMATICS PAPER 2

SOLUTIONS

Question	Solutions	Marks
1(a)(i)	$(a^{\frac{2}{5}})^{10} \div (a^{\frac{1}{3}})^{6}$	
	$\begin{vmatrix} a & b \\ = a^4 \div a^2 \end{vmatrix}$	M1
	$= a^2$	A1
1(a)(ii)		
-()()	$(81m^{-6})^{\frac{1}{2}}$	
	$=9m^{-3}$	M1
	$=\frac{9}{2}$	A1
17. \(\frac{1}{2}\)	m ³	
1(a)(iii)	$= \frac{9}{m^3}$ $\frac{x^4 - x^2}{x^2 - x}$	
	$\begin{array}{c c} x^2 - x \\ \end{array}$	
	$= \frac{(x^2 - x)(x^2 + x)}{x^2 - x}$	M1
	$\begin{vmatrix} x - x \\ = x^2 + x \end{vmatrix}$	A1
	- X T X	731
1(b)(i)	$\frac{2}{1}$ 1	
	$x^{-\frac{2}{3}} = \frac{1}{4}$	
	2 2	M1
	$x^{\frac{2}{3}} = 4$ $x = 4^{\frac{3}{2}}$	IVII
	$x=4^{\frac{1}{2}}$	
	$x = 8$ $243^{x+7} = 27^{x-1}$	A1
1(b)(ii)	$243^{x+7} = 27^{x-1}$	M1
	$3^{5x+35} = 3^{3x-3}$ $5x+35 = 3x-3$	M1
	3x+35=3x-3 $2x=-38$	
	x = -19	A1
1(c)(i)	$\frac{3}{4}x - 23 < 5 - x \le x - 10$	
	$\frac{3}{4}x - 23 < 5 - x \text{ or } 5 - x \le x - 10$	
	$\left \frac{7}{4}x < 28 \right \qquad 15 \le 2x$	
	$x < 16$ $7.5 \le x$	M1
	$7.5 \le x < 16$	A1
1(c)(ii)	11	A1
2(-)()	DD#	
2(a)(i)	$I = \frac{PRT}{100}$	
	$I = \frac{(1000)(4)(3)}{100} = \120	M1
	Total = \$1120	A 1

47-17:5		
2(a)(ii)	$A = P\left(1 + \frac{r}{100}\right)^n$ $A = 1000\left(1 + \frac{4}{100}\right)^3$	
	$A = 1000 \left(1 + \frac{4}{100}\right)^3$	M1
	A = \$1124.864	M1
	\$1124.864 - \$1120 = \$4.86	A1
2(b)	24×\$72.50 = \$1740	M1
	$\frac{1}{3}$ × \$2400 = \$800	
	\$800 + \$1740 = \$\$2540	A1
2(c)	$\frac{298}{80} \times 100 = \text{€372.50}$	M1
	$372.50 \times 1.56 = S$581.10$	A1
3(a)	$\frac{1500}{x}$	B1
3(b)	1360	B1
	$\overline{x-3}$	
3(c)	$\frac{1360}{1500} - \frac{1500}{1500} = 5$	3.61
	x-3 x	M1
	$\frac{1360x - 1500x + 4500}{x(x-3)} = 5$	M1
	$-140x + 4500 = 5x^2 - 15x$	
	$5x^2 + 125x - 4500 = 0$	M1
	$x^2 + 25x - 900 = 0 \text{ (shown)}$	
3(d)	$x^2 + 25x - 900 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$x = \frac{-25 \pm \sqrt{(25)^2 - 4(1)(-900)}}{2(1)}$ $x = \frac{-25 \pm \sqrt{4225}}{2}$	
	25+ /4225	
	$x = \frac{-23 \pm \sqrt{4223}}{2}$	M1
	x = 20 or $x = -45$	A1, A1
3(e)	1500	M1
	20	A1
4(a)(i)	- \$13	
()(-)	$= \$75$ $2c = \sqrt[3]{\frac{e^2}{d}}$ $2c = \sqrt[3]{\frac{9^2}{3}}$	
	$2c = \sqrt[3]{\frac{9^2}{3}}$	
	2c=3	
	c = 1.5	B1

$2c = \sqrt[3]{e^2}$	
1.2c = 21	
$\int_{0}^{\infty} \sqrt{d}$	
ρ^2	M1
$8c^3 = \frac{c}{d}$	1411
	A1
· !	M1
	A1
$=\frac{2}{x-3}-\frac{2}{(2x+1)(x-3)}$	M1
$=\frac{2(2x+1)}{(x-3)(2x+1)}-\frac{x+3}{(2x+1)(x-3)}$	
$=\frac{4x+2-x-3}{(x-2)(2x+1)}$	M1
$\frac{(x-3)(2x+1)}{2x-1}$	
$=\frac{3x-1}{(x-2)(2x+1)}$	A1
(x-3)(2x+1)	
$3x - 5y = 31 - \dots (1)$	
From (2),	Any appropriate method –
x + 3y = 1	M1
$x = 1 - 3y - \dots (3)$	
Sub (3) into (1)	
l .	A1
y = -2	A1
Sult 2 into (2)	
x = 1 - 3(-2) = 7	
$\sqrt{6^2 + 8^2}$	M1
1 ·	A1
Volume = $\pi(6)^2(2) + \frac{\pi}{3}\pi(6)^2(8)$	M1, M1
$=168\pi$	A1
$=2\pi(6)(2)$	3.54
$= 24\pi$	M1
	x+3y=1 $x=1-3y$

	Curved SA of Cone	
	$=\pi(6)(10)$	M1
		IVII
	$=60\pi$	
	Total SA	
	$= 24\pi + 60\pi + \pi(6)^2$	A1
	$=120\pi$	
5(c)	$2\pi(6)\times3\times60$	M1
	= 6785.840132	
	= 6790 cm	A1
6(0)	p = 36	B1
6(a) 6(b)	Correct scale	B1
O(D)	Correct points	B1
	Smooth curve	B1
6(c)	x = 1.8 or 3.8	B1, B1
(()	(Accept 1.7 to 1.9) (Accept 3.7 to 3.9)	D1, D1
6(d)	Draw tangent	M1
	Gradient = 10.7 (Accept 10 to 12)	A1
6(e)	Draw $y = 20x$	M1
	x = 1.4 (Accept 1.3 to 1.5)	A1
7(a)	$\angle GFP = \angle DCP$ (Alternate angles)	
	$\angle FGP = \angle CDP$ (Alternate angles)	M1
	GF = DC (sides of parallelogram)	
	ΔPCD is congruent to ΔPFG (AAS)	A1
7(b)	ΔGBD or ΔAGF or ΔABE or ΔFCE	B1
7(c)	PC _ 1	
	$\frac{6}{6} = \frac{7}{2}$	M1
	PC = 3 cm	A1
	Or	
	Since $\triangle PCD$ is congruent to $\triangle PFG$,	M1, A1
7(4)(2)	Therefore $PC = PF = 6 \div 2 = 3 \text{ cm}$	
7(d)(i)	$\frac{1}{2}$	B1
7(4)(ii)	area of $\triangle AGF = 1$	
7(d)(ii)	===============================	
	area of ΔABE 9	
	$\frac{\text{area of } \Delta AGF}{} = \frac{1}{}$	
	area of trapezium GBEF 8	B1
04 141		
8(a)(i)	$BC^2 = 70^2 + 95^2 - 2(70)(95)\cos 120^\circ$	M1
	$BC^2 = 20575$	M1
	BC = 143.4398829	A 1
	$BC = 143 \mathrm{m}$	Al

8(a)(ii)	180 70	
υ(α)(11)	$\frac{180}{\sin 120^{\circ}} = \frac{70}{\sin \angle ADB}$	
	$\sin \angle ADB = 0.336787657$	
	$\angle ADB = 19.68128117^{\circ}$	M1
	1000 10 (01001170 1000	
	180° – 19.68128117° – 120°	M1
	= 40.31871883	
	≈ 040.3°	A1
8(b)	$\tan 24^\circ = \frac{h}{180}$	M1
	$180 \\ h = 80.14116336 \approx 80.1 \mathrm{m}$	A1
8(c)	143.4398829 95	
-(-)	$\frac{\sin 120^{\circ}}{\sin \angle ABC}$	
	$\sin \angle ABC = 0.5735672095$	
	$\angle ABC = 34.99935463^{\circ}$	
	$\angle CBD = 40.31871883 - 34.99935463$	
	= 5.319364204°	7.61
	- 3.313331261	M1
	Area =	
	$\frac{1}{2}$ (180)(143.4398829)sin(5.319364204)	M1
	2 = 1196.810683	A1
	= 1190.810083 = 1197 m ²	Ai
	or	
	$\frac{1}{2}(180)(70)\sin 40.3187 = 4076.34515$	M1
	1	1411
	$\frac{1}{2}$ (70)(95) sin 120 = 2879.534468	M1
	4076.34515 – 2879.5344	
	=1196.810682	
	$\approx 1197m^2$	
	~11717	A1
0(-)	Landh of Major and ABC = (10)(2 = 1.2)	M1
9(a)	Length of Major arc APC = $(10)(2\pi - 1.2)$ = 50.83185307 m	1411
	= 50.85183507 III = 50.8 m	A1
9(b)	Area of Sector APCO = $\frac{1}{2}(10)^2(2\pi - 1.2)$	
		MI
	= 254.1592654	M1
	Area of triangle AOC = $\frac{1}{2}(10)(10)\sin 1.2$	
	= 46.6019543	M1
	Total area of segment APC	
	= 254.1592654 + 46.6019543	A1
	= 300.7612197	

	$= 301 \text{ cm}^2$	
9(c)	Total Volume = 300.7612197×20	M1
	$=6015.224 = 6020 \text{ cm}^3$	A1
9(d)	Curved Surface area = 50.83185307×20	
	=1016.637061	M1
	Total surface area= 1016.637061 + 2	M1
	(300.7612197)	
	= 1618.159501	A1
	$= 1620 \text{ cm}^2$	
10(a)	$1.63 \times 3600000 = US\5868000	B1
10(b)	$2.44 \times 2.17 \times 2.17 = 11.489716$	M1
	$11.489716 \times 14000 = 160856.024 \mathrm{m}^3$	A1
10(c)(i)	80 ×5868000	M1
	100	
	= US\$4694400	A1
10(c)(ii)	Savings per year =	
	$\frac{20}{20} \times 5868000 = US \1173600	M1
	$\frac{100}{100} \times 3808000 = 0.5311/3600$	
	2800000÷1173600	M1
	= 2.385821404	
	2.505021101	
	Not possible	A1
	*	
	Or	
		M1
	US1173600 \times 2 = US2345200	1411
	US\$2880000 - US\$2345200	
	=US\$454800	M1
	Not possible as they are short of US\$454800.	A1

