## Paper 1: [20 marks] Answer all the questions in the OTAS provided.

1 Which of the following shows the correct S.I. units for the various quantities?

|   | mass     | time   | weight   | moment            |
|---|----------|--------|----------|-------------------|
| Α | gram     | minute | kilogram | newton centimetre |
| В | gram     | second | newton   | newton metre      |
| C | kilogram | minute | kilogram | newton centimetre |
| D | kilogram | second | newton   | newton metre      |

A voltage of 50 millivolts is applied across a resistor causing a current of 800 microampere to flow.

Which row gives the voltage in volts and the current in ampere?

|   | voltage / V | current / A |
|---|-------------|-------------|
| Α | 0.00005     | 0.0008      |
| В | 0.00005     | 0.0000008   |
| С | 0.05        | 0.0008      |
| D | 0.05        | 0.0000008   |

3 A pendulum has a period of 1.0 s.

A stopwatch is started when the pendulum is vertical and is moving to the right as shown.



Which diagram shows the position and direction of the pendulum 5.75 s later?



The diagram below shows the reading of a micrometer screw gauge when it is used to measure an object of length 5.62 mm.



What is the zero error of the micrometer screw gauge?

- 0.25 mm A

+ 0.25 mm В

- 0.75 mm

- + 0.75 mm
- Which is a scalar quantity? 5
  - acceleration
- weight В

speed

- displacement
- The following are distance-time graphs. Which graph shows an object 6 at rest?



B



C



D



7 Which graph shows the motion of a heavy object falling from a height of 80 m (Neglect air resistance).



A car travels 80 m due North in 12.0 s. The car then turns around and travels 30 m due South in 8.0 s.

What is the magnitude of the resultant velocity of the car during this 20 second interval?

A 1.5 m/s

**B** 2.5 m/s

C 4.0 m/s

D 5.5 m/s

**9** The diagrams below show four bricks with forces applied on them.

Which brick will move with the greatest acceleration when the forces are applied?



partnerInLearning
More papers at wyggtestpapersfree.com

- 10 When two equal and opposite forces act on an object moving with constant velocity, what will happen to the moving object?
  - A The object will move faster as it was already moving.
  - B The object will move slower due to the equal and opposite forces.
  - C The object will stop immediately as there is no resultant force.
  - D The object will continue to move with the same velocity.
- 11 The diagram below shows two forces acting at right angle on a ball.



What is the magnitude and direction of the resultant force acting on the ball?

|   | magnitude / N | direction |
|---|---------------|-----------|
| Α | 5             | PR        |
| В | 5             | RP        |
| C | 7             | PR        |
| D | 7             | RP        |

12 A pin is squeezed between the finger and thumb as shown below.



#### Which statement is correct?

- A The force of the pin is larger on the finger than on the thumb.
- **B** The force of the pin is larger on the thumb than on the finger.
- C The pressure of the pin is larger on the finger than on the thumb.
- **D** The pressure of the pin is larger on the thumb than on the finger.

- 13 Which property of a block of metal remains constant when it is heated?
  - A volume

**B** mass

C density

D surface area

The diagram below shows a single brick and a stack of three bricks. All the bricks are identical.



Compared to the single brick, the stack of bricks has

- A three times the mass, volume and density.
- B the same mass but three times the volume and density.
- C the same density but three times the mass and volume.
- D the same volume but three times the mass and density.
- The weight of a meteorite on Earth is 680 N and on Mars is 252 N. The gravitational field strength on Earth is 10 N / kg.

What is the gravitational field strength on Mars?

A 0.27 N / kg

**B** 0.37 N / kg

C 2.70 N / kg

**D** 3.71 N / kg

16 The diagram shows a measuring cylinder that contains water and a stone.



The initial volume of water in the measuring cylinder is 2.0 cm<sup>3</sup> and the mass of the stone is 3.0 g.

What is the density of the stone?

A 0.65 g / cm<sup>3</sup>
 C 1.15 g / cm<sup>3</sup>

**B** 0.87 g / cm<sup>3</sup>

**D** 1.53 g / cm<sup>3</sup>

Four methods of lifting a heavy box using a lever are shown below. Which method would most effort be needed to lift the box?



- 18 The centre of gravity of a body hanging freely is located \_\_\_\_\_\_
  - A vertically below the pivot
  - B vertically above the pivot
  - C at the right of the pivot
  - D at the left of the pivot
- A uniform beam, 8 m long, is pivoted at the centre.

  Two forces of 6 N and 11 N are applied to the beam as shown below.



What is the value of force F needed to balance the beam?

**A** 10 N **C** 20 N

- **B** 16 N
- 20 N **D** 32 N
- A pendulum is raised at the side and set oscillating. After some time, the pendulum returned to its original rest position. What kind of equilibrium is this illustrating?
  - A unstable equilibrium
- B stable equilibrium
- C neutral equilibrium
- **D** none of the above

# Section A Answer all the questions in the spaces provided.

1 (a) A student measures the diameter of a metal ball bearing using a pair of vernier calipers as shown below.



| V V                                                                                                     |
|---------------------------------------------------------------------------------------------------------|
| (i) State the reading shown on the vernier calipers.                                                    |
| [1]                                                                                                     |
| (ii) Describe two precautions one should take before using the vernier calipers to perform measurement. |
| ***************************************                                                                 |
| ***************************************                                                                 |
| [2]                                                                                                     |
| (iii) Describe how the student can improve the accuracy of the above results                            |
|                                                                                                         |
| ***************************************                                                                 |

(b) A student checks the accuracy of a grandfather's clock by using a digital stopwatch to find the period of its oscillation.



| (i) State what is meant by period of oscillation?                       |     |
|-------------------------------------------------------------------------|-----|
|                                                                         | [1] |
| (ii) His timings for three separate measurements of 20 oscillations are |     |
| 27.01 s, 26.24 s and 27.15 s respectively.                              |     |
| Colculate the average period of the grandfather's clock                 |     |

2 Two trains **P** and **Q** travel between the same two stations on parallel tracks. The graph below shows the distance-time graph of the two trains.



Train  $\mathbf{Q}$  starts its journey at time t = 0 minutes and train  $\mathbf{P}$  starts its journey at t = 10 minutes.

| (a) | Explain h | ow the | above grap | h shows | that trai | n P has | s a grea | ater spee | d tha | n |
|-----|-----------|--------|------------|---------|-----------|---------|----------|-----------|-------|---|
|     | train Q.  |        |            |         |           |         |          |           |       |   |

| [1] |
|-----|
|-----|

| (b) From the graph, state the distance when train P will overtake train Q. |  |
|----------------------------------------------------------------------------|--|
|                                                                            |  |

(c) Calculate the speed of train Q giving your answers in km / h.

(d) Calculate the average speed of train P.

(e) Another train R makes the same journey. It travels at the same speed as train P. Train R leaves 40 minutes later than train P. On the same graph, draw the distance-time graph for train R. [2]

- 3 A box is pushed to the left by a force of 80 N and a frictional force of 35 N acts from the ground.
  - (a) Draw the forces, with magnitude, acting on the box.

[2]



(b) Calculate the mass of the box if the acceleration is 5 m / s<sup>2</sup>.

| mass = | = . |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - | k | Ç | 3 |  | 2 | 2 |  |
|--------|-----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|---|---|--|---|---|--|
|--------|-----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|---|---|--|---|---|--|

The diagram below shows a hydraulic device that is used to compress paper in a waste disposal site.



A force of 30 N applied at piston **A** exerts a pressure. The liquid transmits this pressure to piston **B** which then causes a force to be exerted on the paper.

The area of piston  $\bf A$  is 0.010 m² and the area of piston  $\bf B$  is 0.50 m². (a) Calculate the pressure exerted by piston  $\bf A$ .

| (b) | Calculate | the | force | exerted | on | piston | В. |
|-----|-----------|-----|-------|---------|----|--------|----|
|-----|-----------|-----|-------|---------|----|--------|----|

|   | force exerted = N [2]                                                                                             |
|---|-------------------------------------------------------------------------------------------------------------------|
| , | (c) Suggest how the distance moved by piston B compares with the distance moved by piston A. Explain your answer. |
|   | •••••••••••••••••••••••••••••••••••••••                                                                           |
|   |                                                                                                                   |
|   | [2]                                                                                                               |
| 5 | (a) What is inertia?                                                                                              |
| , |                                                                                                                   |
|   | [1]                                                                                                               |
|   | (b) State the effect on inertia if the mass of an object is decreased.                                            |
|   |                                                                                                                   |
|   | [1]                                                                                                               |

The diagram below shows a metal washer of mass 6.5 g.

The washer is 0.15 cm thick. The internal and external diameters are marked as shown below.



(a) Calculate the volume of metal in the washer, given that the volume of a cylinder =  $\pi r^2 h$ .

(b) Calculate the density of the metal.

(c) State the effect on the density of the metal if the metal washer is cut into two halves.

| 7 | An allow is a mixture of two or more metals. One alloy is made by melting 4 cm³ of a metal of density 5 g / cm³ with 8 cm³ of another metal of density 6 g / cm³.  Assuming there are no changes in the volume as the alloy is made, calculate |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) the mass of the alloy,                                                                                                                                                                                                                     |
|   | mass of alloy = g [2] (b) the density of the alloy.                                                                                                                                                                                            |
|   | density of alloy = g / cm³ [2]                                                                                                                                                                                                                 |

The diagram shows a stone supported by two strings that hang from a rod. The tensions in the strings are 2.0 N and 1.3 N as shown below.



In the space below, draw a labelled vector diagram to determine the size of the resultant force.

scale used =

| esultant force  | = |                 | N | [4]  |
|-----------------|---|-----------------|---|------|
| Countaint 10100 |   | *************** |   | F .1 |

The diagram below shows a barrier found in most carparks. The barrier is in equilibrium. The weight of the pole is 450 N and the centre of gravity of the pole is 1.30 m away from the pivot. The centre of the counterweight is positioned 0.30 m from the pivot.



(a) Calculate the weight of the counterweight C needed to balance the pole.

|     | weight of counterweight <b>C</b> = N [2]                                                                                                                               |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | Suggest one practical way in which this system can be modified so that a smaller downward force from the counterweight can be used to overcome the weight of the pole. |
|     | [1]                                                                                                                                                                    |

### Section B Answer any two questions in the spaces provided.

- A car travels at 20 m / s for 3 minutes. It then accelerates uniformly to a speed of 35 m / s in 3 minutes. It then travels at this uniform speed for another 5 minutes before decelerating uniformly to rest in 2 minutes.
  - (a) Using the grid below, plot a graph to show the variation with time of the speed of the car. [3]



(b)(i) Calculate the acceleration of the car as it increases speed from 20 m / s to 35 m / s.

acceleration = .....[2]

uniform speed.

(ii) Calculate the total distance moved by the car when it is travelling at

| total distance =[                                                                                 | 2] |
|---------------------------------------------------------------------------------------------------|----|
| (c)(i) State what is meant by uniform acceleration.                                               |    |
| [                                                                                                 |    |
| (ii) What is the acceleration of the car when it is moving at uniform speed? Explain your answer. | _  |
| ······································                                                            |    |
|                                                                                                   | 21 |

A hot air balloon is tied to the ground by two ropes. The diagram below shows the forces acting on the balloon.



The ropes are untied and the balloon starts to move upwards.

(a) What is the tension T in the rope before the ropes are untied?

| (c) Calculate the initial acceleration of the balloon when the ropes are untied. Show clearly the formulae used.                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                            |
|                                                                                                                                                            |
|                                                                                                                                                            |
| acceleration =[3]                                                                                                                                          |
| (d) Draw the free body diagram of the balloon with the forces acting on it when it is tied to the ground. [2]                                              |
|                                                                                                                                                            |
|                                                                                                                                                            |
|                                                                                                                                                            |
| (e) When the balloon is still accelerating, the pilot pours some sand away from the bags. Explain how this affects the upward acceleration of the balloon. |
| •••••••••••••••••••••••••••••••••••••••                                                                                                                    |
| [2]                                                                                                                                                        |
| [2]                                                                                                                                                        |

The diagram below shows a helicopter stationary in the air.

Vertical forces are produced by the front rotor and the back rotor.



The weight of the helicopter is 150 kN and the horizontal distances are marked above as shown. The gravitational field strength g is 10 N / kg.

| (a)(i) State two differences between m  | nass and weight.        |
|-----------------------------------------|-------------------------|
|                                         |                         |
|                                         |                         |
|                                         | [2]                     |
| (ii) Determine the mass of the helico   | opter.                  |
|                                         |                         |
|                                         |                         |
|                                         | mass of helicopter =[2] |
| (b)(i) State the principle of moments.  |                         |
|                                         |                         |
|                                         |                         |
| *************************************** | [2]                     |

| required to keep the helicopter in equilil                                          |                 |
|-------------------------------------------------------------------------------------|-----------------|
|                                                                                     | lift force =[2] |
| (iii) By taking moments about X, what is the from the back rotor? Explain your answ | er.             |
|                                                                                     |                 |
|                                                                                     |                 |

End of Paper 2

## 3E Science Physics (MYE) Answers Paper 1 [20 marks]

| 1  | D | 11                   | Α      |
|----|---|----------------------|--------|
| 2  | С | 12<br>13             | D      |
| 3  | Α | 13                   | B<br>C |
| 4  | В | 14<br>15<br>16       | С      |
| 5  | ပ | 15                   | D      |
| 6  | С | 16                   | С      |
| 7  | Α | 17                   | ם      |
| 8  | В | 18                   | Α      |
| 9  | С | 17<br>18<br>19<br>20 | Α      |
| 10 | D | 20                   | В      |

### Paper 2

Section A: [45 marks]

|       | Section A: [45 marks]                                                                                         |       |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| No.   | Answer                                                                                                        | Marks |  |  |  |
| 1(a)  | ) 2.14 cm B1                                                                                                  |       |  |  |  |
| (i)   |                                                                                                               |       |  |  |  |
| (ii)  | - Check the vernier calipers for any zero error.                                                              | B1    |  |  |  |
|       | <ul> <li>Grip the object gently using the outside jaws of the<br/>vernier calipers.</li> </ul>                | B2    |  |  |  |
| (iii) | Obtain several readings of the diameter [1] by taking     measurements at various points. Then, calculate the |       |  |  |  |
|       | average value of the readings [1].                                                                            | B2    |  |  |  |
| 1(b)  | Period of oscillation refers to the time taken for one                                                        | B1    |  |  |  |
| (i)   | complete oscillation.                                                                                         |       |  |  |  |
| (ii)  | Average time for 20 oscillations                                                                              | · ·   |  |  |  |
|       | = (27.01 + 26.24 + 27.15) / 3 = 26.80 s M1                                                                    |       |  |  |  |
|       | Average period = 26.80 / 20                                                                                   |       |  |  |  |
|       | = <u>1.34 ş</u>                                                                                               | A1    |  |  |  |
| (iii) | Shorten the length of the pendulum.                                                                           | B1    |  |  |  |
| 2(a)  |                                                                                                               |       |  |  |  |
| (b)   | 40 km                                                                                                         | B1    |  |  |  |
| (c)   | Speed of train Q = gradient                                                                                   |       |  |  |  |
| ` ′   | = 120 km / (90 / 60) h                                                                                        | M1    |  |  |  |
|       | = 80 km / h                                                                                                   | A1    |  |  |  |
| (d)   | Average speed = total distance / total time                                                                   |       |  |  |  |
|       | = 120 km / (60 / 60) h                                                                                        | M1    |  |  |  |
|       | = <u>120 km / h (to 3 sf)</u>                                                                                 | A1    |  |  |  |



|      | $= 9.83 \text{ g / cm}^3 \text{ (to 3 sf)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| (c)  | No effect on density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1                                |
| `    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>5</b> '                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| 7(a) | Using mass = density x volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
|      | $= (5 \times 4) + (6 \times 8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1                                |
| (b)  | = 68 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1                                |
| (b)  | Using density = total mass / total volume<br>= 68 / (4 + 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                                |
|      | = <u>5.67 g / cm<sup>3</sup> (to 3 sf)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1                                |
| 8    | scale used = 1 cm : 0.2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 mark for scale                  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 mark for correct                |
|      | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | parallelogram                     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | drawn with dotted                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lines                             |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 mark for double arrow resultant |
| ]    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | force                             |
|      | / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 mark for correct                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | answer within                     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | range of 2.4 - 2.8                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|      | /2.0N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|      | THE CONTRACT OF THE CONTRACT O |                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|      | 400 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |
|      | 40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |
|      | resultant force = 2.6 N → A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
| 9(a) | Using anticlockwise moment = clockwise moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
| - () | $F \times 0.30 = 450 \times 1.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                                |
|      | F = <u>1950 N</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1                                |
| (b)  | The counterweight can be shifted further away from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
|      | the pivot [1] OR use a lighter pole [1] so that a smaller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1                                |
|      | downward force can be used to overcome the weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |
|      | of the pole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |

#### Section B: [20 marks]



|            | Using a = F / m = 1200 /                                       | 680 → M1                                        | B1 for formula                                                                                                                                   |
|------------|----------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|            | $= 1.76 \text{ m/s}^2 \text{ (to 3 sf)} \rightarrow \text{A1}$ |                                                 | A1                                                                                                                                               |
| (d)        |                                                                |                                                 | 1 mark for correct upward force drawn     1 mark for all correct downward forces drawn     Note: 1 mark will be deducted for any missing forces. |
|            | 600 N                                                          | 600 N<br>300 N                                  |                                                                                                                                                  |
| (e)        | The acceleration of the to the weight of the balloon           | decreases / resultant                           | B1                                                                                                                                               |
|            | force upwards increases                                        |                                                 | B2                                                                                                                                               |
| 12         | Mass                                                           | Weight                                          | B2                                                                                                                                               |
| (a)<br>(i) | amount of matter in a body                                     | a gravitational force                           |                                                                                                                                                  |
|            | scalar quantity                                                | vector quantity                                 |                                                                                                                                                  |
|            | SI unit: kg                                                    | SI unit: N                                      |                                                                                                                                                  |
|            | independent of<br>gravitational field<br>strength              | dependent on<br>gravitational field<br>strength |                                                                                                                                                  |
| (ii)       | Using m = W / g = 150 0                                        |                                                 | M1                                                                                                                                               |
| `          | = <u>15 00</u>                                                 |                                                 | A1                                                                                                                                               |
| (b)        | The principle of moment                                        |                                                 | B2                                                                                                                                               |
| (i)        | body is in equilibrium, the sum of clockwise                   |                                                 | Note: 1 mark is deducted for any                                                                                                                 |
|            | moments about the pivo anti-clockwise moments                  | t is equal to the sum of                        | missing key points.                                                                                                                              |
| (ii)       | F x 12.0 = 150 000 x 5.0                                       | M1                                              |                                                                                                                                                  |
| \/         | F = 62 500 N                                                   |                                                 | A1                                                                                                                                               |
| (iii)      | The moment produced by the lift force from the                 |                                                 | 7.1                                                                                                                                              |
| `          | back rotor is zero [1] as                                      |                                                 | B1                                                                                                                                               |
|            | the force and the pivot is                                     |                                                 | B2                                                                                                                                               |