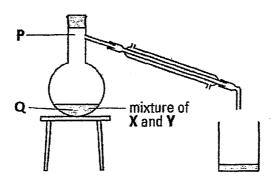
Name:	()	Class:
	SECONDARY 4 O I PRELIMILARY EXAMINA	
CHEMISTRY 5073		
Paper 1		31 August 2016
r apor 1		1 hour
READ THESE INSTRUC	TIONS FIRST	
Write your name, register	number, and class on the OAS s	sheet using a soft pencil .
	are four possible answers A, B, C er and record the corresponding	C and D . letter using a soft pencil on the OAS sheet.
Each correct answer will A calculator may be used		oe deducted for a wrong answer.
	e is provided on page 2. given in brackets [] at the end of as for this paper is 40.	each question or part question.
		·
	•	
		For Examiner's Use
٠		Total (40)
	·	· · · · · · · · · · · · · · · · · · ·

	1	į	ł	þ
•	٩	Ì	ú	ľ
		Ę		ī
	1	į	è	Ì
	į	Ė		Ľ
	1			•
	1	Ş	ż	þ
i	ŀ	ź		i
	١	2	-	į
	į	į		ì
	1	ė	ï	•
ï	i	ì		5
8			_	
	ì	i	ì	5
	1	۰		•
	1	į		þ
ŧ	١	ï	Ī	2
	ì	ŀ	d	į
_	١	Š	ľ	į
ı	ŀ		•	
		ŀ	ď	2
ė	١	ľ	4	į
	•	į	į	í
	1	•		•
•	1	Ì	,	
	1	ľ	L	Ì
1	ľ	١		_
4	•			
	1	ξ		١
•	1	ĺ		
i	į			
1	•			

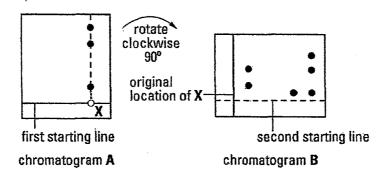
								ĕ	Group								
-	=											111	2	۸	IA	ii,	0
							H H hydrogen										4 He helium
ŀ		_											Į.		46	-	
\ =	30 å											- = a	2 0	± 2	2 c	<u>»</u> u	3 2
	beryllium	****) & S	- 5	nikogen	mygen	- 22	i Se
	4											5	æ	7	8	6	10
S	24	ساحت										27	28	6	32	35.5	40
	ZO.											₹		۵.	Ø	Ö	¥
aodem 1.1	magnostum 12			•							-	13	14.	phoephorus 15	16 16	emonino 7	18 18
	40	45	48	51	29	55	56	28	88	\$	65	92		75	7.8	8	8
×	ပီ		F	>	Ö	ğ		රි	Z	ਫ਼			89	As	Š	ă	ż
5	4 6	scandium 2.4	Ottomkern	vanadem	chromism	Ęř	fron Sec	cobak	alckal Z	2000 OC		gallum	germantum	arsenio	solonium 34	Promine	krypton
20	A B B	90	-	20	90	3	101	103	10R	108	112	115	119	122	128	127	131
3 5	S in	3 > 	Z	3 2	\$ \$	۲	2		P		8	2.5	S	හි	ē	-	ş
rubidium	strondum	yttrium	zhoontum	쿻	matybdenu i	chrettum	Ę	~	pallacium		cadimium			entimony 5.4	tokunum	adine 52	xenon
÷	ģ	R,	D	1.6	42	2	\$				Q.	2		* 0	70	3	5
133	137	139	178	181	184	186	190	192	195		201	• •	207	508 1	1 1	1 7	1 6
යී .	Ba D		Ī	<u>s</u>		8	ő	<u>ا</u>	<u>a</u>		2	71	23	7 T	O T	At	Ę
creatum 55	banum 56	57 *	namum 72	Tantalum 73	Umparion 74	75	76 76	77	78	79	80	81		83	84	85	86
1	1	ı.															
Ē	Z.	S.															
francium 87	28	- eathlum 89 +															
*58-71 L	*58-71 Lanthanoid series	d series															
190-103	†90-103 Actinoid series	series		3		•											
				1	141	144	1	150	152	157	128	162	165	167	169		175
				දී	<u>a</u> .	골.	Æ	ES	굨.	g	۵.	à	운		٤	2	3
					59 60	1900ymmum	W.m. Stamonum	12	63	gacouraum 64	65	17sproseon 66	1041114UII	68	69	70 70	7.1
Key B	Г	a # relative atomic mass		232		23	,	1	1	١.	ŝ	1	1	1	3	1	1
<u>></u>		X = atomic symbol		F	Ра	>	욷	2	Æ	Ę	ă.	ნ ,	ES.	E.	₹:	2	ב
S		6 = proton (atomic) number) number	thorken Co	protecting	nage C	mappingue u		m emerichum	E 8	berkelkum 97	Kem cathornum v	ii Septembra Sep	a marine a	nerdoler 404	TO COL	403
٥	7		J	8	18	<u>,</u>	25	5	3	3	7			T. C.			


1 An excess of aqueous sodium hydroxide was added to a sample of ammonium sulfate crystals. The mixture was then heated gently, and the gas evolved was dried and collected using a suitable method.

What is the most suitable drying agent and gas collection method for the gas evolved?

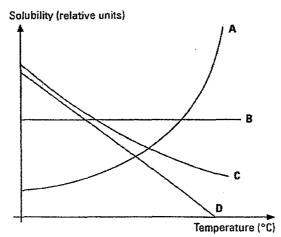
	Drying agent	Gas collection method
Α	Anhydrous calcium chloride	Water displacement
В	Concentrated sulfuric acid	Downward delivery
С	Anhydrous calcium chloride	Upward delivery
D	Concentrated sulfuric acid	Upward delivery

2 The diagram below shows the partial set-up of a simple distillation experiment used to separate two substances, X (boiling point of 70°C) and Y which is soluble in X (boiling point of 535°C).



At which position, **P** or **Q**, should the bulb of a thermometer be placed at and what temperature should the thermometer show when the first distillate is collected.

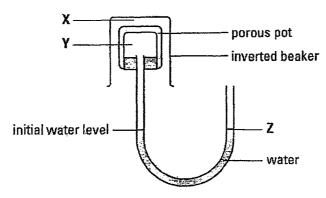
- A At P and at 70°C
- B At P and at 535°C
- C At Q and at 70°C
- D At Q and at 535°C


3 An experiment was carried out to determine the different types of sugar present in a sample of mixture **X**.

Chromatogram A shows the separation of sugars using water as a solvent. Chromatogram A is then removed, rotated clockwise and then placed inside another solvent, ethanol. The final results are shown in chromatogram B.

How many different types of sugars are present in mixture X?

- **A** 3
- B 4
- **C** 5
- **D** 6
- 4 The solubility curves of four different substances A to D in water are shown below:



Which substance is the most suitable to be collected by crystallization from its hot saturated aqueous solution?

Which of the following best describes the arrangement of particles present in dilute aqueous ammonia?

	NH ₃ molecules	OH ions
Α	Not present	Close together
В	Not present	Far apart
С	Close together	Close together
D	Far apart	Far apart

6 The diagram below is a set up involving two gases X and Y.

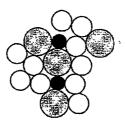
After some time, the water level at Z rises. What could be the identities of gas X and Y?

	Х	Y
Α	Fluorine	Neon
В	Ethane	Nitrogen dioxide
С	Air	Methane
D	Sulfur dioxide	Propene

7 The melting and boiling points of three substances are given below.

Substance	Melting point/ °C	Boiling point/ °C
Argon	-189	-186
Nitrogen	-210	-196
Oxygen	-218	-183

At what temperature would one of the above substances exist as a solid, another one as a liquid and the third as a gas?


A -184°C

B -188°C

C -192°C

D -214°C

- 8 Which of the following pairs consists of two mixtures?
 - A Petrol and air
 - B Sugar and bronze
 - C Steel and hydrogen chloride
 - D Petroleum and sulfur dioxide
- 9 The diagram below shows the structure of a substance.

Which of the following statements about the substance is true?

- A The substance is a compound.
- B The substance melts over a range of temperature.
- C The substance has a fixed composition of its constituents.
- D The substance can be broken down into simpler forms by chemical means.
- 10 The following particles has different number of nucleons and electrons.

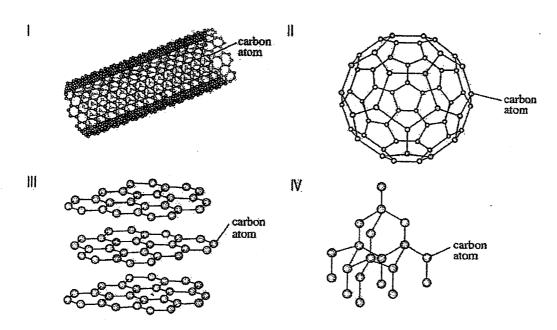
Particle	Nucleon number	Number of electrons
Atom L	26	12
ion M ²⁺	24	10

Which of the following statements about the particles is true?

- A Atoms L and M have different number of protons.
- B Atoms L and M have different number of electrons.
- C Atoms L and M have the same number of neutrons.
- D Atoms L and M have similar chemical properties, but different physical properties.
- 11 An imaginary element has two isotopes:
 - The first has 15 protons and a relative abundance of 80%
 - The second isotope has 16 neutrons.

If the relative atomic mass of the imaginary element is 30.2, determine the number of neutrons in the first isotope.

- **A** 15
- **B** 16
- C 30
- **D** 31


12 Study the molecule below:

Suggest which Group of elements W, X, Y and Z could be from.

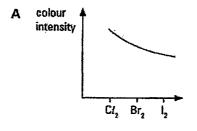
	W	Х	Υ	Z
Α	Group III	Group V	Group VI	Group I
В	Group IV	Group III	Group VI	Group VII
C	Group III	Group V	Group II	Group I
D	Group IV	Group V	Group VI	Group VII

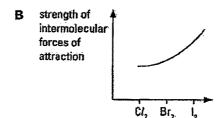
13 Answer questions 13 and 14 using the diagram below.

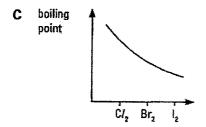
Carbon can form different structures as shown:

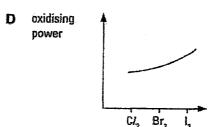
Which structure(s) is/are likely to be electrical conductors?

- A III only
- B I and III only
- C I, II and IV only
- D I, II, and III only

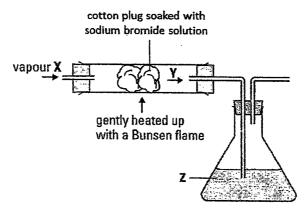

- 14 Using the diagram on question 13, identify which structure(s) has/have a simple covalent structure.
 - A II only
 - B I and II only
 - C I, II and III only
 - D None of the above
- 15 The table below gives some information on four substances


Substance	Melting point	Boiling point	Electrical of	conductivity	Solubility in
	/°C	/°C	As solid	As liquid	water
W	17	118	Poor	Poor	Soluble
Х	455	1547	Poor	Good	Insoluble
Υ	1064	2970	Good	Good	Insoluble
Z	3550	4830	Poor	Poor	Insoluble


Which of the following statements is likely to be true?


- A W has a simple covalent structure.
- B X has a giant metallic structure.
- C Y is a polymer.
- D Z is held together by electrostatic forces between oppositely charged ions.
- 16 Which of the following substances contains the largest number of atoms at room temperature and pressure?
 - A 72 dm³ of argon
 - B 2 moles of bromine
 - C 24 g of carbon
 - D 3 x 10²³ carbon dioxide
- 17 The percentage composition of hydrogen in a hydrocarbon is 11.1%. If 1 mole of the hydrocarbon combusts completely to form 3 moles of water, what could be the relative mass of the compound?
 - A 14
 - B 27
 - C 54
 - **D** 56

- 18 3.0 g of impure magnesium is added to 150 cm³ of 2.0 mol/dm³ dilute hydrochloric acid. What is the percentage purity of magnesium if only 2.4 dm³ of hydrogen gas was produced at the end of the reaction.
 - A 40.0%
 - **B** 62.5%
 - C 80.0%
 - D 83.3%
- 19 Which of the following statements about Group I metals is incorrect?
 - A Reactivity increases down the group.
 - **B** Melting point decreases down the group.
 - C All Group I metals can react with cold water and the resultant solution turns red litmus paper blue.
 - D When Group I metals are exposed to air, they react to form a grey metal oxide that is insoluble in water.
- 20 Which graph correctly describes a trend down Group VII?



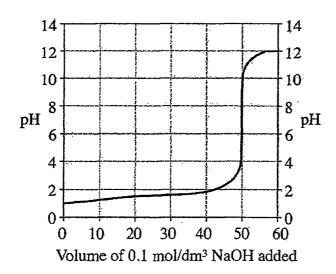
21 Vapour X was passed through a tube containing a cotton plug saturated with aqueous sodium bromide. The tube was warmed gently. The gas Y leaving the tube was then bubbled into Z.

What are the possible identities of substance X and Z, with the correct corresponding observations?

	Х	Z	Observation
Α	Fluorine	Liquid hexene	Brown vapour Y decolourised when in contact with Z
В	Chlorine	Aqueous potassium iodide	No colour change at Z
С	lodine	Liquid octene	Brown vapour decolourised when in contact with Z
D	lodine	Aqueous potassium chloride	Z turned greenish-yellow

22 A substance NaXO₄ undergo a chemical reaction with hydrogen peroxide, according to the following equation:

$$2NaXO_4 + 3H_2O_2 \rightarrow 2XO_2 + 2NaOH + 2H_2O + 3O_2$$


What is the role of hydrogen peroxide in the above reaction?

- A lt acts as a catalyst.
- B It is a reducing agent.
- C It is an oxidizing agent.
- **D** It is a dehydrating agent.
- When acidified aqueous potassium iodide is added to iron(III) sulfate solution, what will be observed?
 - A No visible change.
 - B Pale yellow solution turns brown.
 - C Pale green solution turns brown.
 - D Pale yellow solution turns pale green.

- 24 Which of the following statements about strong and weak acids is true?
 - A There are no mobile OH ions present in all types of aqueous acids.
 - **B** A weak dibasic acid will always have a faster rate of reaction as compared to a strong monobasic acid of the same concentration.
 - C For the same basicity and concentration, weak acids have a lower pH than strong acids.
 - D Regardless of strength, monobasic acids of the same concentration and volume require the same number of moles of aqueous sodium hydroxide for complete neutralization.
- 25 The chart below shows the colours of three indicators at different pH values:

Indicator	Colour change	pH which colour
	Low pH → high pH	change takes place
Methyl orange	Red → yellow	4.0
Bromothymol blue	Yellow → blue	6.5
Phenophthalein	Colourless → pink	9.0

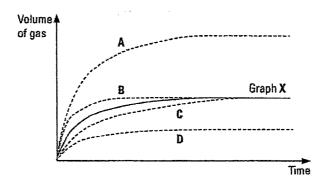
Titration is carried out between aqueous sodium hydroxide and dilute hydrochloric acid. The pH change is plotted onto the graph shown below.

Which indicator(s) can be used to identify the end point of this titration?

- A Methyl orange only
- B Bromothymol blue only
- C Bromothymol blue and phenolphthalein only
- D Methyl orange, bromothymol blue and phenolphthalein

- 26 Which of the following salts can be prepared using the same method?
 - A Zinc chloride, calcium sulfate
 - B Potassium iodide, lead(II) iodide
 - C Copper(II) sulfate, lead(II) nitrate
 - D Ammonium chloride, magnesium nitrate
- When aqueous lead(II) nitrate was added into an unknown solution, a white precipitate was formed. Subsequently, dilute nitric acid was added dropwise to the resultant mixture, till in excess. Effervescence was observed and the white precipitate dissolved completely.

Based on the observations, suggest what could be present in the unknown solution.

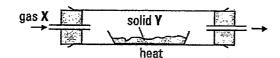

- A Zinc chloride
- **B** Ammonium iodide
- C Aluminium sulfate
- D Sodium carbonate
- 28 In experiment 1, one mole of ethane undergoes complete combustion to form carbon dioxide and water only. In experiment 2, one mole of butane is combusted completely instead. How will the activation energy and enthalpy change of experiment 2 be different from experiment 1?

	Activation energy	Enthalpy change
Α	Unchanged	Unchanged
В	Increase	Unchanged
С	Unchanged	Increase
D	Increase	Increase

29 0.0100 mol of zinc powder is added to 100 cm³ of 0.100 mol/dm³ dilute hydrochloric acid at 25°C. The volume of gas produced is plotted against time as shown by **Graph X** below.

The experiment is then repeated using 0.0100 mol of granulated zinc with 100 cm³ of 0.200 mol/dm³ dilute hydrochloric acid at 50°C.

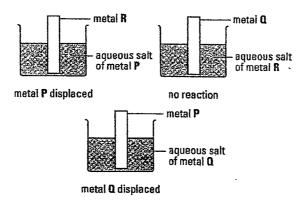
Which of the following graphs could be obtained for the second experiment?


- 30 Which gases can be removed by factories using moist calcium carbonate?
 - A NO, NO₂, SO₂
 - B HCI, NO, CH4
 - C CO, NO₂, CH₄
 - D HCI, NO₂, SO₂
- 31 The table below provides information on the chemical properties of four metals and some of their compounds.

Metal	Metal + Steam	Metal oxide + Coke	Metal carbonate heated strongly
W	H₂ gas evolved	Oxide reduced	CO ₂ evolved
Х	H₂ gas evolved	No visible change	No visible change
Υ	No visible change	Oxide reduced	CO ₂ evolved
Z	H₂ gas evolved	No visible change	CO ₂ evolved

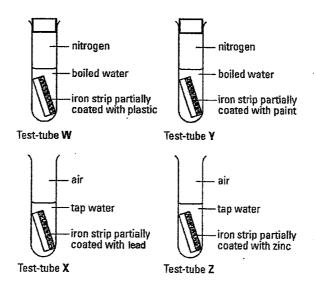
Which of the following shows the correct order of reactivity of the metals?

	Most reacti	ve -)	least reactive			
Α	Υ	W	Z	Х			
В	Х	Z	W	Y			
С	Z	Х	W	Υ			
D	W	Х	Y	Z			


32 An unknown gas X is passed over heated solid Y, as shown below.

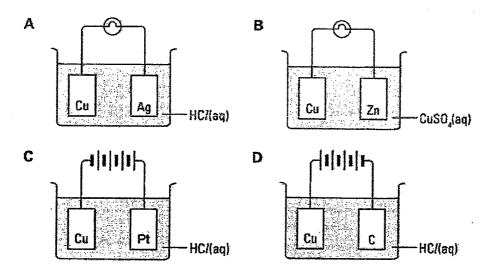
Which of the following pairs of reactants will undergo a reaction?

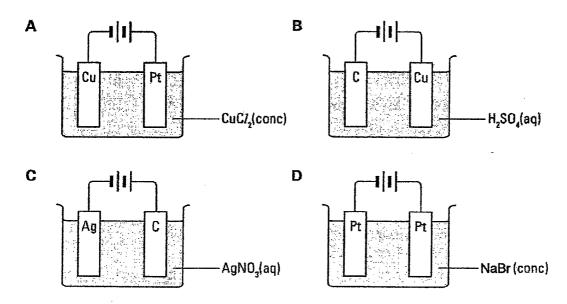
	Gas X	Solid Y
Α	Carbon monoxide	magnesium oxide
В	Carbon dioxide	Zinc oxide
С	Hydrogen	Iron(III) oxide
D	Steam	Lead


33 Three metals were added into three aqueous salts as shown.

Which one of the following gives the correct order of metal reactivity?

	Least reactive	/e →	Мо	Most reactive					
Α	P	Q		R					
В	P	R		Q					
C	Q	P		R					
D	Q	R		Р					


34 Four iron nails are placed in separate test tubes and subjected to different conditions as shown below.


After some time, which of the above iron nails will rust?

- A X only
- B Z only
- C X and Z only
- D W and X only

35 Four experimental set ups are shown below. Which set up will produce bubbles of colourless, odourless gas around the copper electrode?

36 Four electrolytic cells are shown below. After a short period of time, which set up will the pH of electrolyte decreases the most significantly?

- 37 Which of the following statements describing naphtha and lubricating oil is true?
 - A Naphtha is more flammable than lubricating oil.
 - B Both naphtha and lubricating oil have sharp boiling points.
 - C Naphtha consists of larger hydrocarbons than lubricating oil.
 - D Naphtha is obtained below lubricating oil in a fractionating column.

1

38 The structures of molecules X and Y are shown below.

Which of the following statements about the two molecules is true?

- A They are isomers of each other.
- B They have different empirical formula.
- C They have the same percentage composition.
- D They are from the same homologous series since their general formula is the same.
- 39 The labels on the containers of substances X and Y have been mixed up.

Which chemical test can be used to distinguish between substances X and Y?

- A Adding copper metal
- B Aqueous sodium carbonate
- C Bromine under ultraviolet light
- D Warm acidified potassium manganate(VII) solution
- 40 The diagram below shows an organic molecule.

How many different types of polymer can be formed using the monomer above?

- A None
- B One
- C Two
- D Three

Answers to Section A: Circle the most appropriate answer to each question.

1	С	11	A
2	A	12	D
3.	D	13	D
4	A	14	Α
5	D	15	Α
6	В	16	В
7	С	17	С
8	A	18	С
9	В	19	D
10	D	20	В
21	A	31	В
22	В	32	С
23	В	33	С
24	D	34	Α
25	D	35	С
26	С	36	C .
27	D	37	A
28	D	38	С
29	A	39	В
30	D	40	D

Name:	()	Class	•
	SECONDARY 4 O PRELIMILARY EXAMIN		
CHEMISTRY 5073			
Paper 2			22 August 2016
		1	hour 45 minutes
READ THESE INSTRUCTION	NS FIRST		, ,
Write your name, register num Write in dark blue or black pe You may use a soft pencil for Do not use highlighters, glue, Answer all questions. Write all answers in the answ If working is needed for any of Give non-exact numerical ans specified in the question. The use of a scientific calcular You are reminded of the needed. A copy of Periodic Table is The number of marks is given The total number of marks for	n. any diagrams or graphs. correction fluid or correction er space provided. question it must be shown waswers correct to 3 significant ator is expected, where apprehenced for clear presentation in your provided on page 2. In in brackets [] at the end of	n tape. with the answer. t figures unless a different lessons copriate. our answers.	
		For Exa	miner's Use
		Section A (50)	
		Section B (30)	
		Total (80)	

This document consists of 19 printed pages.

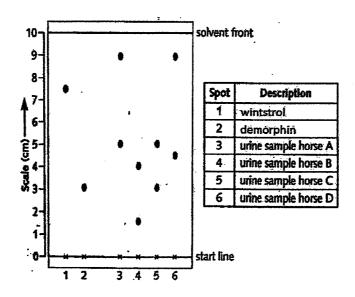
The Periodic Table of the Elements

1		_	T	Т			Т			T			T-		***********	T			1								1		
1		0	1 - 2	20	2	10 E	L	¥	18 18	\$	호	Acypton 36.	131	*	xenon 54	ŀ		~						175	3	Zesta		ב	lawrenokum 103
Tild				10	U. ,	Alucine 9	35.5	ວ	dipolino V	80			1		***		¥	nstaline 85						173	ç	ydarbium 70		S	notelium 102
11 12 14 14 144 15 15 15 15 1		5		16	0	onygen 8	32	(A)	## 19 19	78	S.	selentum 34	128	9	62		g.	pobnium 84						169			Ŧ-	χ	TO1
11		Λ		44	Z,	nagown 7	31	О.	phosphorus 15	75	As	orsenic 33	122	ගි.	Enamony 51	209	8	Demuth 83						167		E	l.		g
11 14 14 14 14 15 15 15		≥		12	ပ	Carroon Se	28				පි	gommun 32	119		S	1		7		·				165	운	-	- -	E)	§
Tild		111		11	മ		27	₹	anument 13	22		31 31	115			204	Ĕ	malibra 81						162	2	Japaneskum 86			5
1									·			30 20	112	8	8	201	를	mercury 80						159			,	番	berkeßum 97
11 140 141 144 140 141 144 140										\$	ਰ		108	ð.	47	197	₹	8 8 9						157	3	24 Page 12 Pag		్ర్ట్	authun 96
148 51 52 55 56 58 58 58 59 59 59 59 59	dno									23		28	106	D	46	195	ĭ	pletinum 78						152	a	63	,	Am	£
48 51 52 55 56 Ti V Cr Min Fe	Ö						•			28	8	27	103	ž	45	192	<u>.</u>	77 rden						150	ES	52	1	2	plutonium 94
48 51 52 55 Ti V Cr Min 22 23 24 24 91 93 96 Zr Nb Mo Tc zircontum nobytdenu lachnetism 40 41 42 43 48 T72 184 78 Re H T8 184 78 Re T22 186 144 T23 Nd T22 Nd T23 Nd T23 Nd T24 Nd T25 Nd T25 Nd T26 Nd T27 Nd T2			Tydrogen 1							, 20 1	<	Ē.			#	2	ő	osmum 76							E	81	,	2	neptunium 93
48 51 52 24 Ti V Cr 22 33 24 91 93 93 96 Zr Nb Mo Zrcontum noblem molyden 40 41 42 m hathum tantakm tungsten 72 73 47 74 89 No mesohman tungsten 72 56 59 No mesohman tungsten 72 73 47 74 89 No mesohman tungsten 72 59 75 59 No mesohman tungsten 72 73 74 74 89 No mesohman tungsten 72 75 75 75 75 75 75 75 75 75 75 75 75 75										25	UN C	25	1 1	2	43	186	. Re	mentum 75						144	2	60 60	882	>	urarka 92
48 51 71 22 23 91 93 51 72 23 240 72 73 240 72 73 240 72 73 73 73 740 72 73 73 73 73 740 72 73 73 73 73 73 73 73 73 740 72 73 73 73 73 73 73 73 73 73 73 73 73 73										8				MO	42 m	2								141	1			Pa	protectinium 91
48 Ti (Barium 22 91 27 Zr Contun 40 40 40 10 metalem 40 172 Metalem 40 10 metalem 40 10 metalem 40 numbes				٠.						2	> 0000	23	93	S	41	181	a	73						140	<u>.</u>	58.	232		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									***************************************	\$ F	(fibershere	22	9	Z. Z.	40	178	Ī	72) number
				*********						\$ 5			8;			139	8	67 *	ł	Ş:	89 +	series	series				alive atomic	mic symbol	ion (alomic
× 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				තර	Decomposition	4	7 5	Mg	12	6 9	,		88	· inconferen	38	137		unu n	ŧ	8	88	nthanola	Actinoid &			1	10 m to	oje = X	oud = 9
A S S S S S S S S S S S S S S S S S S S	_ 	-		~:	J S	3		E Z		88.2	Potheshan		£ (£	- 1	133	3	5	1	Ľ,	udou D	58-71 La	190-103 /				L	<u>×</u>	(ا

Section A

Answer all the questions in this section in the spaces provided. The total mark for this section is 50.

A1 The following substances have different physical properties as shown below:


Substance	Melting point/ °C	Boiling point/ °C	Solubility in water		
W	-114	78	soluble		
Х	-6	300	insoluble		
Υ	801	1413	soluble		
Z	Sublimes	at 338°C	soluble		

		Z	Sublimes at	338°C	soluble				
	Whe	en these subs	tances are mixed, phy	sical methods of	separating them may	y include:			
		ation omatography	sublimation separating funnel	simple distillation					
(a)	at r		bove list, the best met ature may be separa other.		-				
	You	may use a m	ethod once, more tha	n once or not al a	ıll.				
	(i)	A mixture of	f W and X :			[1]			
	(ii)	A mixture of	f X and Y:			[1]			
	(iii)	A mixture of	f Y and Z :			[1]			
	(iv) A mixture of W, X and water:								
		•							
		2	***************************************						

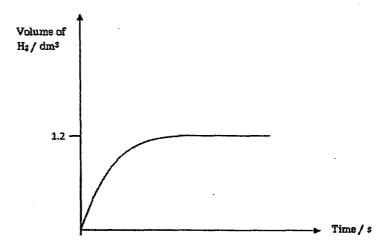
(b) Chromatography is used by 'Horse Racing Forensic Laboratory' to test for the presence of illegal drugs in racehorses.

Concentrated samples of urine from racehorses are spotted onto chromatography paper on the start line. Alongside this, two known illegal drugs such as winstrol and dermorphin are spotted. The chromatogram is run using **methanol** as the solvent. When finished, the chromatogram is analysed by placing under ultra-violet light.

A chromatogram of urine from four racehorses is shown below:

(i)	Calculate the R _f value of winstrol?	[1]
(ii)	Will the R _f value of winstrol change if water, instead of methanol, was used as the solvent? Explain your answer.	[1]
(iii)	State which horse was fed an illegal drug and name the drug used.	[1]
(iv)	What is the purpose of ultra-violet light, when used to analyse the chromatogram?	[1]

[9 Marks]

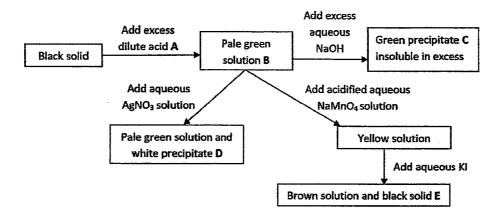

A2	cond	Tin is a Group IV element. At room temperature, tin has a silvery white appearance and can conduct electricity. When cooled to low temperatures, the appearance of tin turns grey and the structure of tin transforms into one that resembles diamond.									
	(a)		erms of bonding and structure, briefly explain why tin can conduct electricity at a temperature.	[2]							
	(b)		e whether tin can conduct electricity at low temperatures. Explain your answer g bonding and structure.	[2]							
	(c)	(i)	Silicon is above tin in the Periodic Table. Silicon only has a structure similar to diamond and it reacts with oxygen to form silicon(IV) oxide, which is acidic in nature.	[1]							
			Tin can also react with oxygen to form tin(IV) oxide. The tin(IV) oxide formed can undergo two reactions as shown below:								
			$SnO_2(s) + 2NaOH (aq) + 2H_2O (I) \rightarrow Na_2[Sn(OH)_6] (aq)$ $SnO_2(s) + 2H_2SO_4(aq) \rightarrow Sn(SO_4)_2(aq) + 2H_2O (I)$								
			Suggest the nature of tin(IV) oxide.								
		(ii)	Hence, describe the trend of one chemical property for Group IV elements down the group.	[1]							
		٠									

":::

(d)	Describe the procedures required to obtain pure, dry silicon(IV) oxide from a mixture of silicon(IV) oxide and tin(IV) oxide.					
					_	
					-	
					_	
	[9	Marks]				
diss	ocia	=	· ·	sociation constant. The larger the lissociation constant for some acid		
		Type of Acid	Acid	Dissociation constant, K _a		
		Inorganic	Hydrochloric acid, HCI	1.3 x 10 ⁶		
			Nitric acid, HNO ₃	2.5 x 10 ¹		
		Organic	Methanoic acid, HCOOH	1.8 x10 ⁻⁴		
			Ethanoic acid, CH₃COOH	1.75 x10 ⁻⁵		
			Propanoic acid C ₂ H ₅ COOH	1.34 x10 ⁻⁵		
			Oxalic acid, HOOCCOOH	5.9 x10 ⁻²		
(a)	(i) Using the table above, compare and comment on the general difference in the dissociation constants of organic and inorganic acids. Explain the difference in values with reference to the extent of dissociation.					
	(ii)			, ethanoic acid and propanoic acid exylic acid homologous series.	, [2]	

A3

(b) Excess magnesium was added to 100 cm³ of 1 mol/dm³ aqueous methanoic acid. The time taken for the metal to produce hydrogen gas was measured and a graph was plotted as shown below.



This experiment was then repeated using different dilute acids, but **keeping all the** other conditions the same.

- (i) On the same diagram, sketch a graph of the reaction when propanoic acid is [2] used. Label this graph as A.
- (ii) On the same diagram, sketch another graph of the reaction using nitric acid. [2] Label this graph as **B**.
- (iii) On the same diagram, sketch another graph of the reaction using oxalic acid. [2] Label this graph as C.
- (iv) Another student carried out the experiment with magnesium and oxalic acid [2] dissolved in methylbenzene. Write down the observation. Explain your answer.

[12 Marks]

A4 a The flow chart below shows a series of chemical tests involving substances A to E.

Give	the	chemical	formula	of	substances	Δ	to	F
CIVE	uic	CHEHICA	iviiiiuia	UI	อนบอเสมเบซอ	~	w	_

[5]

A:

B:

C:

D:

E:

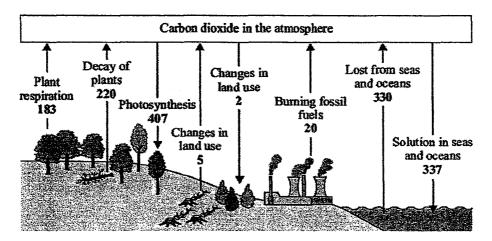
b Write down the ionic equation for the formation of precipitate C.

[1]

[6 Marks]

A5 a When 3.10 g of copper(II) carbonate is added to 100 cm³ of 49.0 g/dm³ dilute sulfuric [2] acid, calculate the maximum volume of carbon dioxide that can be produced, measured at room temperature and pressure.

	b		ly 400 cm ³ of carbon dioxide is obtained from the reaction in part a , what is the entage yield of the reaction?	[1]
	c		g the collision theory, explain how an increase in temperature will affect the rate of tion in part a.	[2]
A 6	a		arks] titanium is extracted from its ore, rutile - TiO ₂ . e is first reacted with chlorine at 1000°C to produce titanium(IV) chloride and	
		oxyg (i)	en gas. The titanium(IV) chloride formed is then cooled and collected. Construct the chemical equation for the reaction above.	[1]
		(ii)	Which is the oxidizing agent in the reaction above? Explain your answer using oxidation states.	[2]
	b	Titar	nium(IV) chloride is then reacted with magnesium at 1100°C in a sealed reactor	
		whic	th is filled with argon gas. Titanium is then obtained at the end. Name the type of reaction that occurred in part b.	[1]
		(ii)	Other than magnesium, suggest another metal which could be used in part b .	[1]


	ninium can also be added into titanium to form an alloy to increase the overall agth of the metals.
strer	·
strer	ngth of the metals.

Section B

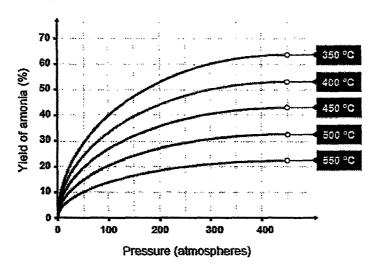
Answer all the **three** questions in this section.

The last question is in the form of an either/or and only one of the alternatives should be attempted.

Below shows a schematic diagram of the carbon cycle. The diagram contains environmental features such as plants, factories and oceans which contribute to the removal and release of carbon dioxide to the atmosphere. The amount of carbon dioxide removed or released are represented by numerical values on the diagram. The changes are measured in billions of tonnes of carbon dioxide per year.

(a)	(i)	Sources of carbon dioxide contributors are not only limited to the features shown above. Suggest another source of carbon dioxide emission which is not included in the carbon cycle diagram.	[1]
	(ii)	A carbon sink is an environmental feature that has a tendency to trap and store large amounts of carbon.	
		From the numerical data above, identify an environmental feature that is the most effective carbon sink on land . Explain your answer using values from the diagram.	[2]

(iii) Write a chemical equation to show how the environmental feature in part (a)(ii) [1]


trap and store carbon.

(i)	Using numerical data from the carbon cycle diagram, explain how oceans are being acidified.
(ii)	The burning of fossil fuels such as coal also releases another gas that contributes to ocean acidification. Name this gas.
(iii)	What chemical can be used by factories to remove the gas in (b)(ii)?
(iv)	Write the chemical equation for the reaction in (b)(iii).
	y marine organisms produce calcium carbonate structures and use them as a form selter. Suggest how ocean acidification will affect these organisms.

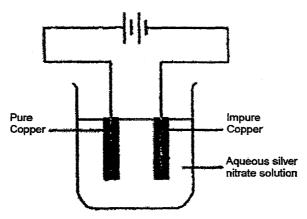
B8 The Haber process produces ammonia from the reaction between nitrogen and hydrogen.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

It be carried out at various temperature and pressure to obtain different yields of ammonia as shown in the graph below.

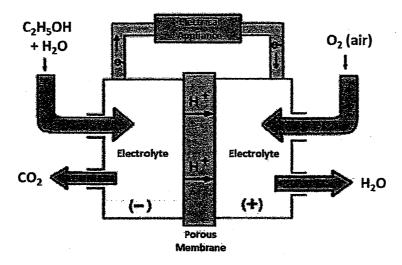
- (a) From the graph, describe the relationship between temperature, pressure and the yield [2] of ammonia.
- (b) (i) Calculate the enthalpy change for the Haber process using the bond energies [2] given below.

Type of bond	Bond energy (kJ/mol)
H-H	432
N-H	391
N-N	160
N=N	418
NEN	941


	ייי	terms of bond breaking and bond formation.	[-
c)	(i)	State the conditions commonly used by industries to carry out the Haber process.	[1
	(ii)	With the aid of a labelled energy profile diagram, explain how a catalyst affects the rate reaction in the Haber process.	[3]
•			

[10 Marks]

EITHER


B9 Copper extracted from the blast furnace can be further purified or refined using electrolysis.

A student tried to carry out this process and set up an experiment as shown below.

(a)	(i)	The student failed to extract copper from the impure copper. State two changes that have to be made to the set up above for the purification process to be carried out properly.		
	(ii)	If the anode in the student's set-up is changed to graphite, what will be observed at the anode and what happens to the pH of the electrolyte after some time?	[2]	

(b) There are various forms of cells that can be used to generate electricity. Below shows the schematic diagram of a direct ethanol fuel cell (DEFC):

The half equation at the anode is:

 $C_2H_5OH + 3H_2O \rightarrow 12H^{+} + 12e^{-} + 2CO_2$

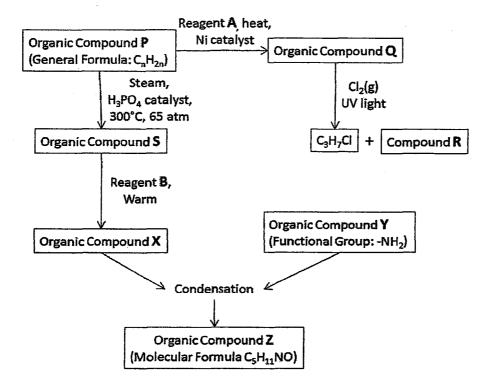
The half equation at the cathode is:

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

(i) Construct the overall equation for the reaction occurring in a DEFC.

[2]

(ii) If 4.00 moles of electrons flow through the electrical appliance, what is the [2] maximum volume of carbon dioxide gas, at room temperature and pressure, that can be produced by the DEFC?


(c) Hydrogen can also be used in a fuel cell, state one advantage and one disadvantage [2] of using hydrogen instead of ethanol in a fuel cell.

OR

B9 Vitamin A, also known as retinol, is important for eye health and vision. Retinol has the following structure:

(a)	(i)	How many moles of aqueous I ₂ can react completely with 1 mol of Vitamin A in the dark?	[1]
	(ii)	Vitamin A (Retinol) is oxidized in the body to form retinoic acid, which helps to maintain skin health and bone growth.	
		Describe a chemical test that could be used to distinguish retinol from retinoic acid. State the corresponding observations.	[2]

(b) Organic compound P has the general formula C_nH_{2n}. It can undergo a series of [7] chemical reaction to form compound Z as shown in the chart below.

(i) Identify and draw the full structural formulae of compounds P, Q, and R.

[3]

P:

Q:

R:

(ii)	What is reagent A?	[1]
(iii)	If compound S and compound X can react together to form a sweet smelling liquid, what is the name of reagent B ?	[1]
(iv)	What is the name of the sweet smelling liquid formed from compound S and compound X?	[1]
(v)	Using information from the flow chart, write down the structural formula of compound Y.	[1]
[10 N	Marks]	

End of Paper 2

Mark scheme for Sec 4 Prelim 2016 Paper 2

Section A (50 marks)

A1	ai	Separating funnel
	aii	Filtration
	aiii	Sublimation
	aiv	Separating funnel, Fractional distillation
	bi	0.75
	bii	Yes, X has <u>different solubility</u> in <u>different solvents</u> ,
	biii	Horse C / Horse 5 Dermorphin / Demorphin
	biv	To make the spots <u>visible/seen</u> . OR <u>reveal/locate or identify</u> the position of the spots.
A2	а	Tin has giant <u>metallic</u> structure/has <u>metallic</u> bonds. consists of cations in a <u>sea of delocalized electrons</u> The <u>electrons are mobile</u>
	b	Each tin atom uses all 4 of its valence electrons / all valence electrons used for covalent bonds/bonding no mobile electrons to conduct electricity
	ci	<u>Amphoteric</u>
	cii	Down group IV, the elements become more metallic in character. Down group IV, the elements turn from non-metal to metal. Down group IV, the elements reducing property increases. Down group IV, the oxides formed turn from acidic to amphoteric. Down group IV, the oxides formed become more basic.
	d	Add excess Aq or dilute nitric acid/sulfuric acid/hydrochloric Filter the mixture to obtain the residue Wash the residue with distilled water (if wash with wrong solution, do not award) Dry between sheets of filter paper
А3	ai	Inorganic acids have larger dissociation constants than organic acids. OR Organic acids have K _a values that are less than 1 [0.5] Inorgannic acids have K _a values that are more than 1 [0.5]
		Inorganic/strong acids dissociates completely

	-	Organic/weak acids dissociates partially
	aii	As the number of C atoms increases within the series or down the series the acids become <u>weaker</u> / strength decreases. Because K _a value <u>decreases</u>
	bi	Gentler initial slope, volume of H ₂ at 1.2 dm ³
	bii	Steeper initial slope,
		volume of H ₂ at 1.2 dm ³
	biii	Steeper initial slope than methanoic acid but gentler than initial slope of nitric acid, max volume of $\rm H_2$ at 2.4 dm 3
	biv	No visible change/no gas evolved/no effervescence (no reaction not accepted) Oxalic acid does not ionize in methylbenzene OR only ionizes in water to form mobile H ⁺ ions Hence it does not display acidic properties / does not behave like an acid
A4	а	A: HCl B: FeCl ₂ C: Fe(OH) ₂
		D: AgCl E: l₂
	b	Fe ²⁺ + 2OH ⁻ → Fe(OH) ₂
		` '- '- '- '- '- '- '- '- '- '- '- '- '-
A5	а	No of mol of $CuCO_3 = 3.1 / 124 = 0.0250$ mol No of mol of $H_2SO_4 = 49/98 \times 0.100 = 0.0500$ mol
		CuCO ₃ is the limiting reagent
		No of mol of carbon dioxide formed = 0.0250 mol Volume of carbon dioxide formed = 0.6 dm³
	b	% yield = 0.4/0.6 x 100% = 66.7%
	С	Particles will have <u>more kinetic energy</u> , Proportion of particles with energy equal to or more than E _a increases. Greater frequency of collisions Greater frequency of effective collisions Faster rate of reaction
A6	ai	$TiO_2 + 2Cl_2 \rightarrow TiCl_4 + O_2$
	ail	Cl ₂ is the oxidising agent. The oxidation state of <u>chlorine</u> <u>decreased</u> from <u>0 in Cl₂</u> <u>to -1 in TiCl₄</u> . Therefore, Cl ₂ is <u>reduced</u> .
	bi	Displacement / Redox
	bii	Any metal above Mg in the reactivity series
	biii	Argon is a noble gas/noble gas configuration.
		It is inert (unreactive not accepted)

	Prevents Ti from oxidizing back into TiO2
1	OR
	Prevents Ti from reacting with air or O ₂
	OR
	Prevents the more reactive metal from reacting with air or O ₂
С	Different sized atoms
	Disrupts the
-	regular arrangement
ŀ	Layers unable to slide over each other ("layers" must be included)

Section B (30 marks)

	Section B (30 marks)		
B7	ai	Any 1 of the following:	
		Combustion of fuel in	
		cars/aircrafts	
		Animal Respiration	
] [Decay of dead animals	
	aii	Plants take in 407	
1 1		but give out 183	
		and <u>220</u>	
		billions of tonnes.	
		OR	
1 1			
		<u>Overall</u> , plants absorb <u>4</u> (award 0m only if ans is 224) billions of tonnes.	
		Dimons of tornes.	
	aiii	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$	
		If $6CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + 6O_2 + 12H_2O$, minus 1/2m (not balanced)	
		•	
1 1	bi	Oceans take in 337	
		but only give out 330	
		billions of tonnes.	
		· 	
1		OR	
		Overall, oceans absorb 7	
		billions of tonnes.	
		Carbon dioxide is acidic / form carbonic acid	
	}	Carbon dioxide is acique / form carbonic acid	
	bii	Sulfur dioxide	
	biii	CaO, Ca(OH) ₂ , CaCO ₃	
	biv	$CaCO_3 + SO_2 \rightarrow CaSO_3 + CO_2$	
.		OR .	
J	l	$CaO + SO_2 \rightarrow CaSO_3$	
l	l	OR	
	İ	$CaCO_3 + H_2SO_3 \rightarrow CaSO_3 + CO_2 + H_2O$	
		OR	
		$Ca(OH)_2 + SO_2 \rightarrow CaSO_3 + H_2O$	
		· · · · · · · · · · · · · · · · · · ·	
	С	Acids can react with/corrode/remove/destroy the carbonate structures	

Do		The higher the temperature, the lower the yield
B8	а	The <u>higher the temperature</u> , the <u>lower the yield</u> The higher the pressure, the higher the yield
		The <u>nigher the pressure</u> , the <u>nigher the yield</u>
	bi	941 + 3(432) OR (+2237)
	Di	-6(391) = OR (-2346)
		-109
		kJ/mol
		The more than th
	bii	The energy absorbed to break bonds (used or required = 0m)
		Is less than
		the energy released to form bonds (used or required = 0m)
		Hence, energy is given out to the surroundings/ the reaction is exothermic
		OR hence ΔH is negative
	ļ 	
	ci	Iron, 400°C, 200 atm
	cii	Correctly labelled axis
	1	Correctly drawn and labelled reactants and products
		Correctly drawn and labelled E _a (catalyzed) and E _a (uncatalysed)
	ļ	Correctly drawn curves (2 curves)
		Don't lead to the second
		Provides an alternative pathway
ļ <u></u>		With lower activation energy
B9	ai	Switch the polarity of the battery OR swap the positions of the electrodes
Eit	<u> </u>	Change the electrolyte to aqueous copper(II) nitrate/chloride/sulfate
her		Change are crossess to added as separately made and a control of a con
	aii	Effervescence is observed.
		pH of the electrolyte <u>decreases/</u> become <u>more acidic</u>
<u> </u>	bi	$C_2H_5OH + 3H_2O \rightarrow 12H^{\dagger} + 12e^{-} + 2CO_2$ $3O_2 + 12H^{\dagger} + 12e^{-} \rightarrow 6H_2O$
	Di	$C_2 \cap S \cap T + S \cap C_2 \cap T \cap T \cap C_2 \cap C_2 \cap T \cap T \cap C_2 \cap C_2 \cap T \cap T \cap C_2 $
		$C_2H_5OH + 3H_2O + 3O_2 \rightarrow 2CO_2 + 6H_2O$
		$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$
	1	02.00.00
	bii	Max no of mol of CO ₂ formed = 4 / 12 x 2 = 0.6667 mol
		Max vol of CO_2 formed = 0.6667 x 24 = 16.0 dm ³
	L	
	C	The only product of the hydrogen fuel cell is water
		Ethanol fuel cell produces CO ₂
		I bedea on the second of the Second of
DA	 	Hydrogen gas needs to be liquefied
B9 OR	ai	4 mol
- UK	aii	Warm and acidified
}	all	potassium manganate (VII) solution will
		turn from purple to colourless
1		when added to retinol
1		Whom added to lettro
		Effervescence OR colourless gas
		Water
		when a reactive metal (must state the metal eg Zn, Mg, etc)
		<u> </u>

.....

OR aqueous sodium carbonate
is added to <u>retinoic acid</u> .

bi

R:

	bii	Hydrogen gas or H₂
	biii	Acidified
		Aqueous potassium manganate(VII)
	biv	Propyl propanoate
	bv	CH₃CH₂NH₂ OR C₂H₅NH₂
L		