Preliminary Examinations (2016) Secondary Four Express

Candidate Register No. Class Name

CHEMISTRY

5073/02

Paper 2 Section A

Date: 24 August 2016

Duration: 1 hour 45 min

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces at the top of this page.

Write in dark blue or black pen.

You are to use a soft pencil for any diagrams or graphs.

Do not use paper clips, highlighters, glue, correction fluid or correction tape.

Section A (50 marks)

Answer all questions in the spaces provided.

At the end of the paper, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 2.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use Section A

-

S)
=
men
뽔
⊏
Φ
īī
Φ
چ
-
≍
J
0
풀
Table
ပ
₹
Perio
ā
ñ
The P
낒
_

		- Control Delivery				-		Group	9				-				
-	=											=	2	>	5	ΕŅ.	o
	:					:	T T Warden						,		and a delay and a		⊅ ₽ E
	***************************************						-							1			2
	σ <i>(</i>					ı						F	12	14	10	13	20
	<u>ă</u>										Lan	ωş	ပနို	Z	0 8	رد ي <u>و</u>	9 5 Z
3	4	,										5	9	7	8	6	10
8 2	2 2										ļ 	12	28	ب ا	35	35.5	Q .
Eodeum	magnesium											At.	io sign	D Control		ŭ	₹ ₹
÷.	~						:	:	•		- <u></u>	13	14	15	_	17	18
æ	各	45	48	51				Ł	83	Г		2	E	75	7	8	8
¥	ပ္မ	B	F	>					Z			වී	ဗီ			ď	ጟ
mysselog	salcium T	agues,	Enjus	unipeu	chromium	manganes.	Ē		alcke.	apper		English.	gemanium.			bramine	naybra.
2		-			34	0			8	7		ઝા	32			જ	8
8 6	28 62	8>	ნ ჩ	8	8	, ,			<u>ප</u> ;			115	119		2 2	127	134
2	ñ		77	2	2	<u>.</u>	SOME	£	•	_		ន	S		a	-	2
37 TE		99 98	40	niobium 4.1	5. 13. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14.	chinetum 3	At At a state of the state of t	modum 45	paladium 46		cadmium 48	A Gum	8 E	алётот. 51	telbeium 52	indne 53	желоп 54
133	137	139	178	181	184	186	8	192	188	197	201		202	209	ı		1
ဝိ	සි	Ę	Ì	æ	≯	æ	රී	<u></u>	đ	Ą	모		đ.	ã	0	¥	쮼
55 55	bartum 16	anthacoum 57	hafinburn 72	tantalum '3	tungster 7.4	rhenium 75	оэтил 76	T de C	platinum 78	79 gold	mercury 80	that lum	28 28	blemuth 83	potentum 84	astatine 85	
1	ŀ	,															
ŭ	S.	Ş															
franckum 87	л гадікт 88																
150 74	74 I and hamping again.	20000															

*58-71 Lanthanoid series †90-103 Actinoid series

141		
4	169 Tm thulum 69	
4	167 Er erblum 68	Fr.n fermium 100
4	165 Ho holmeum 87	
150 152 157	162 Dy Asprostum 86	⊂ Cr csffomium 98
150 152 157	159 To Terbium	– Bk behelun 97
4	157 Cd paddemium 64	i C mag 0
H4 Pm mium promethiu 61 % NP NP Mm neptumiu	152 Eu europium X3	Am mericum SS
H4 Pm mium promethiu 61 % NP NP Mm neptumiu	150 Sm sumartum 62	P-U Parkonium 94
140 141 144 Ce Pr Nd cerlum ressessymu neodymum 56 59 69 X = alomic mass 232 - 238 X = alomic symba D = procon (atomic) number 80 91	Pm Promethism 81	NP neptunium 933
140 141 Ce Pr cerlum præsequeum S8 59 59 X = aterative atomic mass 232 - Th Pa b = proton (atomic) number 90 91	144 Nd neodymium 60	& ~ 텵
140 Ce techum 56 X = alemic symbol b = praton (atemic) number 90	141 PT PT 88900 M	Pa Protectinum 91
a = relative atomic mass X = atomic symbol b = proton (atomic) number	140 Ce terlum 58	232 Th therium 90
		a = relative atomic mass X = atomic symbol b ≈ proton (atomic) number

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (rt.p.).

Section A (50 marks)

1 Structures of six organic compounds are shown below.

compound A

compound B

compound C

compound D

compound E

compound F

- Choose from the above compounds to answer the following questions. Each compound can be used once, more than once or none at all.
 - Which compound(s) can react with metal carbonates to produce effervescence?

- (H) Which compound(s) decolourise(s) aqueous bromine?
- (iii) Which compound(s) will undergo hydration and oxidation to form butanoic acid?

(b) Explain whether compound A and compound B are isomers.

····		
TO THE STREET STREET STREET STREET STREET	*	 a put parias à pare assumant
		 [1]

(c) Draw an isomer of compound D.

[1]

Seawater contains many dissolved ions. The table shows the concentration of some of these ions in a typical sample of seawater.

ion	concentration g/dm ³
chloride	19.00
sodium	10.56
sulfate	2.65
magnesium	1.26
calcium	0.40
potassium	0.38

(a)	(i)	State what you would see if three drops of acidified aqueous silver nitrate is added to $5~{\rm cm}^3$ of seawater.
	(ii)	Hence, construct an ionic equation for the reaction in (a)(i).
(b)		culate the mass of sulfate ions which can be precipitated when excess

[1]

[Total: 3]

Iron from the Blast Furnace contains carbon as an impurity. To remove the carbon, oxygen is blown on the molten iron in a large vessel known as a converter.

(a) The temperature of the molten iron increases as the oxygen is blown onto it. Explain why.

(b) Scrap steel is recycled by being added, as a solid, to the molten iron, before the oxygen blow. The graph shows how the temperature of the molten iron changes during the oxygen below.

(i) Describe and explain how the solid scrap steel affects the temperature change during the oxygen blow.

		(li)	State a reason why it is important to recycle steet.
			[1]
	(c)		ng ideas about the arrangement of atoms, explain why high carbon is preferred over pure iron to be used as cutting tool.
		***	······································
		***	[2]
	·+:		[Total: 6]
4	Hyd	roge	n peroxide is a colourless liquid.
	acid		ous solution of hydrogen peroxide reacts with the iodide ions in potassium iodide to form water and iodine according to the equation slow.
			$H_2O_2(aq) + 2H^+(aq) + 2I^-(aq) \rightarrow 2H_2O(I) + I_2(aq)$
	(a)	(i)	Explain, in terms of electrons, whether the iodide ions are acting as the oxidising agent or reducing agent in this reaction.
			ومد وموسو ومسورة والمراجعة
			[1]
		(ii)	Describe the colour change for the above reaction.
			[1]

(b) The table shows how the speed of this reaction changes when different concentrations of aqueous potassium iodide and dilute sulfuric acid are used. The hydrogen peroxide is always added in excess and the temperature remains constant.

experiment	concentration of aqueous potassium iodide in mol/dm³	concentration of dilute sulfuric acid in mol/dm ³	speed of reaction in mol/dm ³ /s
1	0.1	0.1	0.00017
2	0.2	0.1	0.00034
3	0.1	0.2	0.00017
4	0.3	0.1	0,00051
5	0.1	0.3	0.00017

"The speed of this reaction is more dependent on the concentration of aqueous potassium iodide than aqueous sulfuric acid."

Using the information in the table, justify whether you agree with the above statement.	
• • • • • • • • • • • • • • • • • • •	• •
a//981948990.4/b84480 34/4800444 14/4400000000000000000000000000000	
	••
	40.
•	•
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	÷a.
	21

(c) The experiment was repeated by varying the temperature of aqueous polassium iodide, with other variables being kept constant. The results of the experiment were represented by the graph shown below.

	Use ideas about collision between particles to explain the trend in the results.
	#
	[2]
(d)	A sludent thinks that iron(III) oxide acts as catalyst in this reaction.
	Describe what the student should do and what information he should collect to test his hypothesis.
	11年時中·····
	314 4224
	[3]
	[Total: D]

5 (a) Carbon dioxide is a greenhouse gas and is given a greenhouse factor of 1.

Other gases are given a greenhouse factor that compares their effects with carbon dioxide. The greenhouse effect increases as the factor value increases.

Table 1 below gives information about the greenhouse factor and the composition of four different gases in the Earth's atmosphere.

gas	greenhouse factor	percentage of gas in the atmosphere
CO₂	1	0.036
CH ₄	30	0.0017
N₂O	160	3.0 x 10 ⁻⁴
CC/aF	21000	2.8 x 10 ⁻⁸

Table 1

						methane		
atmosph	ere as	cõmb	ared to th	e percen	tage inc	rease of ca	arbon d	lioxide.
********		***	*******			a pan Prakapakaka		
	ikwa stownia s	uli i i i i i i i i i i i i i i i i i i	(kadı levan id	Varoka eskir		**********		
								[2]

Using the information above, explain whether scientists should be more

(b) Graph 1 below shows how the average temperature at the Earth's surface may have changed over the last 150 thousand years.

Graph 2 below shows how the percentage of carbon dioxide in the atmosphere may have changed over the last 150 thousand years.

(i) Scientists think that an increase in the amount of carbon dioxide will result in global warming.

Explain how Graph 1 and 2 support this statement.

(ii)	"Increase in amount of carbon dioxide is not the only factor which contributes to global warming."
	Using the information from Table 1, Graph 1 and 2, explain how these information can be used to support the above statement.
	ရခိုင်မေလျှင်းကို မြောက်ချာတွင်ရသျှား မေးသည်သည့် မြေလျှင်းသောက် ညှိသိသည်။ ပြိသိသည် သည်သို့နှင့် မြောက်သည် သည်သို့သည် သည်သော သည်သော သည်သော မြောက်သည်သည်။
	· 中央中央部 有面面的名词名的证券,是否的编码,如果是由自己的特殊的正式的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
	[2]
(iii)	Describe one possible consequence of global warming.
	ton ere organiste nombre organiste organiste and new descriptions and and the second of the contract of the co
(iv)	Showing only the outer shell electrons, draw a "dot-and-cross" diagram to show the bonding present in CChF.
	ioi .
	[2]
(v)	Explain how the presence of CChF in the atmosphere contributes to health problems like skin cancer.
	and the second of the second o
	- अकुन पुलिस्कार का कार प्रकार को को कार प्रकार कर के प्रकार कुलान कार विस्तृत्व का बोक प्रकार की प
	[2]
	[Total: 10]

6 Small pieces of a silver coloured metal, X, were added to concentrated nitric acid. A brown acidic gas, Z, and a colourless solution containing salt Y were formed.

Analysis of 0.0914 mole sample of Z showed it contained 1.28 g of nitrogen and 2.93 g of oxygen.

The small sample of the colourless solution was diluted with water and then divided into two portions.

To the first portion

Aqueous sodium hydroxide was added drop by drop until it was in excess. A white precipitate, W, was formed that redissolved in the excess aqueous sodium hydroxide.

To the second portion

Aqueous ammonia was added drop by drop until it was in excess. A white precipitate, W was formed and remained insoluble in the excess aqueous ammonia.

(a) With the means of chemical calculation, determine the empirical formula of Z.

121

		. ••
(b)	(i)	Suggest the identities of precipitate W.
		[1]
	(ii)	Construct one possible ionic equation, with state symbols, for the forming of ${\bf W}$ from the first portion.
		[2]
(c)	(i)	Suggest the identities of X.
		[1]
	(ii)	Describe a chemical test to determine the anion present in Y.

		[2] [7otal: 8]

7 (a) Four isomers of butanol are shown in the table below.

lsomer	1	2	3	4
	снэснэснэснэон	СН₃СН₂-СН-СН₃ ОН	сн₃-сн-сньон сн₃	ÇЊ, СН,_С-СН, ОН
Name	Butan-1-ol	Butan-2-ol	2-methylpropanol	2-methyl propan-2-ol

(i)	Name the organic product when butan-1-of is added to acidified potassium managante (VII).
(ii)	A student would like to prepare a sweet-smelling compound X. He
	added 2-methyl propanol to a beaker containing aqueous propanoic acid, with warming. Concentrated sulfuric acid was also added to the mixture.
	Show the full structural formula of compound X and name compound X.
	[1]
	L'1
	Name of compound X:[1]

(b) Lactomer is a trade name of synthetic material that is used to make surgical stitches. Part of this polymer is shown below.

Draw the two possible monomers which are used to form the above polymer.

(c) Styrene-butylene rubber is a synthetic rubber. It is made by polymerising a mixture of the monomers styrene and butylene.

One possible structure for the polymer is shown below.

(li)	Draw the displayed formula of the repeat unit in this polymer structure.
	displayed formula of the repeat unit
(iii)	When the mixture of styrene and butylene polymerises, the polymer is unlikely to contain only this regular, repeating pattern. Explain why.
	कुष्य १९९१ १.१९ १.१९ १ वर्ष हो १९१४ १.१९ १.१९ १.१९ १.१९ १.१९ १.१९ १.१९

(iv)	Describe one difference between the reactions to form styrene-butylene polymer and lactomer.
	्रेष्ट्रमंतु दुन्तद्वारण प्रकृत्या हेन त <u>रमु</u> द्ध कारमंत्रा सद्द्र पुरुष तीन हो रामांग्रास्कृतिक्षेत्र केन्त्र क्षात्र स्थान स्थान केन्त्र केन्त्र केन्त्र स्थान केन्त्र
	নিইবসুল শাল মুখ্যু একং সাক্ষানৰ কৰে,ছবৰ ১০০ ছবু এয়ুকুলুক্ত নিউল উত্তিয়া কৰিছিল কৰিছিল কৰে কৰু উচনু কৰা কৰিছিল কৰে নিয়েশ্য কৰে সংগ্ৰামৰ কৰে।
	[1]
	[Total:9]

End of Section A

Preliminary Examinations (2016) Secondary Four Express

7			Name	 	Register No.	Cla	22
)	
Candidate				[
	there is the same of the same	Allowania de la companya de la compa		 	and the second s		

CHEMISTRY

5073/02

Paper 2 Section B

Date: 24 August 2016

Duration: 1 hour 45 min

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces at the top of this page. Write in dark blue or black pen.

You are to use a soft pencil for any diagrams or graphs.

Do not use paper clips, highlighters, glue, correction fluid or correction tape.

Section B (30 marks)

Answer all three questions in the spaces provided.

The last question is in the form either/or.

At the end of the paper, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 2 of Section A.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use
Section B

Section B (30 marks)

1 Electrolysis reactions are the basic foundations of today's modern industry. There are various elements, chemical compounds and organic compounds that can only be produced by electrolysis. For example, chlorine and sodium hydroxide.

Brine is a saturated solution of sodium chloride, containing about 25 % by mass of sodium chloride. Industrial electrolysis of brine can be carried out in a diaphragm cell and a membrane cell.

The diagram below shows how the diaphragm cell works.

The brine is contained in the anode compartment and the electrode which is used can either be made up of graphite or titanium. However, graphite is commonly preferred over titanium.

On the cathode side, the hydroxide ions and hydrogen gas are formed due to the reduction of water. Due to the difference in the solution level between the anode and the cathode, there will be a gradual flow of sodium chloride from the anode into the cathode. However, there will not be any backflow of sodium ions into the anode. If chlorine and sodium hydroxide come into contact, chlorine tums into C/O₃, C/O₃ and C/ ions.

To ensure that a pure sodium hydroxide can be collected, purification of sodium chloride out of the sodium hydroxide will have to be carried out. After purification, the industry is able to get a solution of 50% of aqueous sodium hydroxide and about 1% of sodium chloride.

The diagram below shows how the membrane cell works.

In the membrane cell, the brine is fed to the brine concentrator and current passing through will result in the aqueous sodium chloride to split into sodium ions and chloride ions. The sodium ions will flow through the ion exchange membrane and react with the hydroxide ions that are produced through the reduction of water to form aqueous sodium hydroxide. Without the ion exchange membrane, the sodium hydroxide would not be pure because it would contain chloride ions.

The table shows some information about the two types of cells.

cell type	construction	operation of cell	quality of NaOH produced
diaphragm cell	Relatively simple and inexpensive.	Frequent replacement of diaphragm. Operates at 3.8 V.	Must be evaporated to concentrate from 12% to 50% and to crystallise out the salt.
membrane ceil	Cheap to construct and install.	Requires high purity brine. Operates at 3.3 V. Membrane changes every 2 to 3 years.	High purity. Must be evaporated to concentrate from 33% to 50%.

(a)	(i)	Construct a half ionic equation for the reaction that happens at the cathode of the diaphragm cell.
	(ii)	Suggest a reason why graphite is commonly preferred over titanium to be used as electrode in the diaphragm cell.
		[1]
(b)	the o	en chlorine and sodium hydroxide comes into contact, a roportionation reaction happens. Disproportionation happens when exidation state of the same element both increases and decreases in eaction.
	Use sodi	ideas about oxidation state to explain why the reaction of chlorine and um hydroxide is a disproportionation reaction.
		······································
	** * 710	[2]
(c)	(i)	Write an equation for the overall reaction that happens in the membrane cell.
	(li)	Calculate the volume of hydrogen gas that can be produced from two tonnes of saturated brine in membrane cell at r.t.p.
		[3]
(d)	"Indu hydro	stries should adopt using membrane cell to produce sodium oxide instead of diaphragm cell."
		the relevant information, explain one reason why such statement made.

		F43

(e)	A student made the following comment.
	"In school laboratory, I can obtain aqueous sodium hydroxide by just using concentrated sodium bromide solution with graphite electrodes."
	Explain whether you agree with the student.
	્રમાં મુખ્ય મુખ્ય કર્યા છે. મુખ્ય
	[1]
	(Total:10)

2 Many carbonates thermally decompose to form a metal oxide and a gas.

Six 2.00 g of samples of carbonates are heated strongly until there is no further change in the mass. The table shows the mass of solid remaining at the end of the heating.

carbonate	mass before heating / g	mass after heating / g
calcium carbonate	2.00	1.12
copper(il) carbonate	2.00	1.29
ion(II) carbonate	2.00	1.24
magnesium carbonate	2.00	0.95
sodium carbonate	2.00	2.00
zinc carbonate	2.00	1.30

(a) Two students made the following conclusions based on the table above.

Student 1: The thermal stability of the metal carbonate is dependent on the charge of the metal ion.

Student 2: The more reactive the metal, the more thermal stable the metal carbonate is.

		ur reas		is correct	r Ose u	ne inonne	30011 110111	the fable	2
•••••	••••••	• • • • • • • • • •	*******	·····	••••••		*******	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
	•						••••••		
							* *** *** * * * * * * * * * * * * * *		
•••••	* ***	• • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
							है,सहुक र मर्गुगणक विकेश		
, ,	· · ·		- · · · · · · · · · · ·				* ** . * * * * * * * * * * * * * * * *		

(b)		of the metal oxides formed from the decomposition of the metal conate can be used to treat excess acidity of soils in agriculture.
	(i)	Using a 'dot-and-cross' diagram, show the bonding present in this metal oxide. Only outer-shell electrons need to be shown.
		rot
		[2]
	(ii)	Plants thrive well on fertilisers such as ammonium chloride because of the nitrogen content.
		Explain, with an equation, why it is not advisable for farmers to add this metal oxide together with ammonium chloride to the soil.
		entropy of the second of the confidence of the confidence of the second of the confidence of the confi
		[1]
	(III)	The molten state of this metal oxide is suitable to be used as an electrolyte to extract the metal.
		Explain in terms of structure and bonding, why this metal oxide has to be in molten state in order to be used as an electrolyte.
		પ્રાંતિ કર્યા કર્યા છે. જે કે માર્ચ કર્યા કે છે તે એ એ કે મેલ્સ કર્યા કે એ કે કે કે કે કે કે કે પ્રાપ્ત કરે કે જે મુખ્યત્વે કે કે કે કે કે કે કે કે માર્ચ કર્યા કે કે તે એ એક કે
		สุรโด อุดภั จำกุกทุ้งสู่สัญหารัฐ ที่สำหัวที่ ที่ที่ที่มีสาราโดงสารากับสัมหารับสมาชิงเรา และสำหัวที่ คากทำลัง คากทำลัง ครากทำลัง ครากทำลัง

	(iv)	Write down the half ionic equations, including state symbols, for the reaction which takes place at the respective electrodes when this molten metal oxide is electrolysed using carbon electrodes.
		positive electrode:[1]
		electrode[1]
•		negative electrode: [1]

Either

3 (a) Electronegativity refers to the ability of an atom to attract electrons and is otherwise known as 'electron attracting' power. The greater the electronegativity value of an atom, the greater its ability to attract electrons and vice versa.

The diagrams below show the electronegativity of Group I and VII elements.

(i)	Based on the data above, suggest a reason why the electronegativity for Group VII elements is generally higher than the electronegativity for Group I elements.
	. PRE ERE PRESENTE ER DE DE DE DES PRESENTANTES DE PRÉSENTANT DE PRÈSE PRESENTANT DE PRÈSE PRESENTANT DE PRÈSE DE PRÈSE
	[1]
(ii)	Based on the electronegativity of Group VII elements, suggest and explain the trend of the oxidising power of Group VII elements when moving down the group.
	er en de de de de la completa del completa del completa de la completa del la completa de la completa del l
	taring and the same and high angular high and angular angular and and an analysis of the angular and an angular angular and an angular angular and an angular angular and an angular
(iii)	Aqueous chlorine is bubbled into a solution of potassium bromide. Explain, with the use of an ionic equation, what will be observed.

The following diagram shows the electronegativity across Period 3 elements with argon (Ar) being excluded.

(vi)	Describe the general trend of electronegativity across Period 3 elements.					
	AAA અમેર્પ મામ સામેર્પ પ્રથમ પ્રકેશ પ્રકેશ પ્રથમ મામ મામ મામ મુક્કેશીએ કહેં કુમું જોઇ પ્રકેશ પ્રથમ મામ કુમાં કુમાં મુખ્ય કુમાં મામ મામ મામ મામ મામ મામ મામ મામ મામ					
	[1]					
(v)	The electronegativity of the Period 3 elements is dependent on the number of electron shells the elements have.					
	Justify whether you agree or disagree with the statement.					

(b) Other than electronegativity, Group I and VII elements also show trends in their melting points.

	element	melting point / C
	lithium	180
Group I	sodium	97.8
	potassium	64
	chlorine	-101
Group VII	bromine	-7
T	iodine	114

	information p Group I and Gr	•		xplain the tre	end of melting	
وه وهر المراجع والمراجع والمرا	बद कुन्नुप्रकृत्कृत्यः वर्णतः व्यक्तिकण	के क्षत्र है हु के के किस कुछा में के मानव	हे प्रोत्ति हो। संस्थानका प्रक	नेत् दृष्ट्रीनेककृत्रकृति दृष्ट्रीन सरक विश्व	क्षेत्रक कृत्येक विकास काम काम कृति	
	जन्मूरण हुन <u>रे</u> वे के बोर के वे के के के कर क					
\$\$\$\$74,784.784 to	**************************************	ene préside à la partie de la compa	******		[3]	
					[Total:10]	

- (iv) Complete the energy profile diagram to illustrate the energy changes for the overall reaction. Your diagram should include
 - The formula of the reactants and the products
 - The label for the enthalpy change and the activation energy of the reaction.

[Total:10]

End of Section B

Marking Scheme Secondary 4 Express Pure Chemistry Prelim 2016

Section A (40 marks)

1. C	
2. D	
3. A	
4. A	
5. A	
6. A	
7. D	
8. B	
9. C	
10.B	
11.C	
12.C 13.A	
13.A 14.C	
15.B	
16.A	
17.B	
18.B	
19.D	
20.C	
21.8	
22.B	
23.B	
24.A	
25.C	
26.D	
27. B	
28.D	
29.D	
30.A	
31.D	
32.D	
33.A.	
34.A	
35. B	
36, C	
37. D	
38.D	

(b) One other use of hydrogen is using it as a fuel in the Proton Exchange membrane (PEM) fuel ceil as shown in the diagram below.

Proton Exchange Membrane or Polymer Electrolyte Membrane: hydrogen ions move across the electrolyte

Proton Exchange Membrane fuel cells use a polymer membrane (a thin plastic film which is semi permeable) as the electrolyte. Thus, they are also commonly known as Polymer Electrolyte Membrane (PEM) fuel cells.

i)	Hydrogen ions move across Proton Exchange Membrane.
	With reference to a hydrogen ion, explain why it is considered as the "proton" in the Proton Exchange Membrane.
	મહાના મુખ્યાન આવાન નામુક્તિન તેનુ કું તેને તેને તેને તેને તેને માર્ગિયાન માર્ગિયો કે કું તેને તેને તેને તેને તેને તેને તેને તેન
ii)	With reference to the electrodes A and B, state the direction of the flow of electrons in the external circuit.
fil)	Construct an equation for the overall reaction that occurred in the Proton Exchange Membrane fuel cell.
	J11

3	(a)	Researchers have been investigating the use of ethanol for replacing
		hydrogen as a liquid fuel for space craft intended for low Earth orbit. Its
		major advantage is that, unlike hydrogen, ethanol can be used as a liquid
		fuel without the need for storage at extremely low temperatures.

The table shows some information about ethanol and hydrogen.

compound	enthalpy change of combustion/ kJ per mol		
hydrogen	-236		
ethanoi	-1367		

(i) Given that the enthalpy change of combustion of hydrogen is -118 kJ/g, determine which fuel, hydrogen or ethanol, gives a greater energy output per gram of fuel used. Show your workings clearly, leaving your final answer to 3 significant figures.

(lî)	Explain, in terms of bond breaking and bond making, why is combustion of hydrogen an exothermic reaction.
	Tanka ana di madini kalika mbadi mbada mbaka bahaga kanga ana mininga kadi mbadi mbadi mpa di
	[2]
(iii)	In some countries, ethanol is produced from sugars in sugar cane.
•	An environmentalist claims that ethanol as a fuel is 'carbon neutral' because using it does not add to the amount of carbon dioxide in the atmosphere.
	Explain why this is true.
	- แน่ง อสุด แนกสมาริทัยิมเล่นแบบใช้สู่อนัฐมูญหลายให้เพื่อคาไรที่เก็บ คลับกลับที่เมื่อสัยผู้ยัง และนั้นแบบไม้ไกล้ยสียังแก้สุดสียาที่ที่ในเล่นเก็บที่เ
	Pat

[2]

39.D 40.C

Marking Scheme Secondary 4 Pure Chemistry Prelims 2016

Section A Answers

Q/No	Answer	Marks	Remarks/ Markers Comments
1(ai)	C,D	[1]	
(ii)	В	[1]	A few candidates missundertood that unsaturation includes C=O and included C and D as their answers.
(iii)	В	[1]	
(b)	Yes. Both compounds have the same molecular formula but different structural formula.	[1]	general formula is not credited. link back to the definition for isomers; same molecular formula but different structural formula.
(c)		[1]	
2(a)(i)	White precipitate.	[7]	
(H)	Ag+ + Cr - AgC/	[1]	
(b)	(2.65/1000) x 20 = 0.053g	[1]	check table header, concentration is given in g/dm3
3(a)	The reaction between carbon/iron and oxygen is exothermic / heat energy is being released.	[1]	not enough to simply state that O2 reacted with iron/carbon as the reaction can be endothermic if not stated. Keyword to be mentioned is exothermic.

(b)(i)	Between 0 to 10min, the solid scrap steel results in the temperature to increase gently. After 10 min, the solid scrap steel results in the temperature to increase sharply. When the solid scrap steel is added to the molten Fe, it begins to melt for 10 minutes and the sudden rise of temperature is due to combustion of carbon.	[1]	process the data and put down your understanding of the data. understanding of temperature rise has to be mentioned. rej: temperature change Many students were not able to highlight the different in the rate of temperature rise for the two portions. Explanation was also pretty weak.
	Examiners Report 2004: Vague answers such as 'temperature increases' did not score. The simplest statement to score two marks was: 'temperature increases slowly at first then faster'.		
(11)	Iron Ore is finite / recycling steel is cheaper than extracting iron / reduce environmental problem arising from extraction of iron. Examiners Report 2004: In giving an advantage of recycling steel, many candidates gave answers that were too vague for credit, for example 'less pollution', 'less wate' or 'saves resources'. Better answers were more specific, for example discussing landfill area, saving finite metal resources or finite energy sources.	[1]	Any logical answer. Rej: steel has finite resource, because the keywords: finite metal resources
(c)	As carbon atom is of different size compared to iron atoms, the introduction of carbon atom/ different sized atoms disrupt the orderly layer of iron atoms. The layer of atoms in high carbon steel is	[2]	The link to property such as hardness has to be mentioned. 3 pt: 2m 1-2pt:1m

A CONTRACTOR AND A CONT	unable to slide over one another <u>easily</u> . Hence, high carbon steel is harder and more suitable to be used as a cutting tool compared to pure iron.	And the state of t	Some students mentioned about steel being strong, however failed to mentioned it being hard.
4(a)(i	Reducing agent. lodide ions donate electrons.	[3]	Students incorrectly mentioned H was reduced. However, it was ignored. Lose electrons to was accepted VS lose electrons (because the understanding is vague whether losing electrons means iodide ions is oxidised and thus is the reducing agent.)
(fi):	Colourless to brown.	[1]	original and final colour must be mentioned.
(b)	Do not agree. Expt 1,2: When concentration of KI increases by two times from 0.1 to 0.2 mol/dm³, the speed of reaction increases by two times from 0.00017 to 0.00034 mol/dm³/s. Expt 1,3: When concentration of H₂SO₄ increases by two times from 0.1 to 0.2 mol/dm³, the speed of reaction remains unchanged at 0.00017 mol/dm³/s.	[1]	Data has to be quoted and be interpreted for the marks to be awarded. Many students lacked clarity in linking data because it is important to link back to the experiment that is referred to as point of reference compared to just stating all the experiment data.
	Hence rate of reaction more dependent on concentration of KI.	Top company or the event of the	

(c)	Higher the temperature, faster the rate of reaction. Higher the temperature, more particles have higher kinetic energy equal to or greater than (sufficient) activation energy. Higher frequency of effective collisions and hence, faster rate of reaction.	[1]	Many students failed to highlight the full explanation.
(d)	 Carry out two experiments – one with Iron (III) oxide and the other without iron(III) oxide. All other key variables such as temperature to be kept constant. Record the time taken for the reaction to be completed. 	[1] [1]	Repeat the experiment was accepted as long as understanding was shown
5(a)	More worried about the increase in percentage of methane. With 0.00017 % of methane present in the atmosphere, the greenhouse factor is 30, which is 30 times than that of carbon dioxide. With more increase in methane, the impact on the environment will be at least 30 times bigger than that of carbon dioxide.	[1]	

(bi)	Graphs are roughly similar / high percentage of	[1]	and the support of the state of
	carbon dioxide shows there's high percentage		
	of average temperature. (quoted from Jun 2005)		
(ii)	Other gases such as methane, N₂O and CC/₃F	[1]	The second secon
	are present in the atmosphere. Gas such as		
	methane has a greenhouse factor of 30 which		
	implied that their effects on the Earth's		
	average temperature is at least 30 times.	_	
		[1]	
	Between 125 to 100 / 100 to 75 thousand		
	years ago, there was a period of time when		1
	there's a decline in percentage of carbon	,	
	dioxide in the atmosphere but the average		
	temperature of the Earth's surface actually		
	rise.		
(Hi)	melting of polar loe/ rise in sea level/ desertification/extreme climate changes/ effect on animal/plant habitats (quoted from Jun 2006)	[1]	
(iv)		[2]	No key: minus [1] overall
•			Any mistake minus [1]
	Valence electrons of the halogens must be		
	shown correctly.	Andreas de la constitución de la c	
(v)	Results in depletion of ozone layer which	[2]	

	results in more	harmful UV radiation	entering		
	the Earth's surface.			1	
6(a)				Working has to be shown.	
	Number of	(1.28/14)	(2.93/16)		working has to be shown.
	moles	= 0.091429	0.183125	[1]	
	Ratio	(0.091429/0.91429)	(0.18312	[1]	
		<u> = 1.</u>	= 2		
·.	Hence empiric	al formula is NO₂	;		
b(i)	Lead(II) hydrox	ide and aluminium hydr	oxide	[1]	Both correct [1]
(ii)	Pb2+(aq) + 2OH	l (aq) Pb(OH)₂(s)		[2]	[1] eqn
ACAMERICA DE LA CAMERICA DEL CAMERICA DEL CAMERICA DE LA CAMERICA DEL CAMERICA DEL CAMERICA DEL CAMERICA DE LA CAMERICA DEL CAMERICA DE LA CA	A ^p *(aq) + 3OH* (aq) Al(OH) ₃ (s)			[1] state symbols	
(b)(i)	Lead / Pb or Alumnium / Al		[1]	Both correct [1]	
(ii)	•	Al foil to the solution ar queous sodium hydroxi	- 1	[1]	Always to mention results of the experiment and to provide
	Warm. Test the litmus paper.	gas evolved with mois	t red		evidence to support the identity of the gas
•		s paper turns blue.		[1]	
7(a)(i	butan-1-oic ac			[1]	butanoic acid accepted
)					
(11)				[1]	-
		•		[1]	
ا د	2-methyl propy	l propanoate			
(b)				[2]	[1] for each
					·

r			
	•		
		.	
(c)(i)	To match the demand for fractions containing	[1]	
	smaller and more useful molecules from		
	refinery process.		
(ii)		[1]	
(iii)	Both contain C=C which can polymerise at	[1]	
	random.		
(iv)	Addition Polymentsation reaction	[1]	Any 1
	Double bond/ alkene/ unsaturated / only one		_
	type of monomer		
	Only 1 product obtained	:	·
	City i product obtained		
	high temperature and pressure		
	same empirical formula as monomer / same		-
	composition by mass of monomer		
	Composition by treas or monomic		
	Condensation Polymerisation		
	2 type monomers / 2 type functional group /		·
	functional group on each end of member	}	
	small molecule, H2O, given out		·
•	Does not require high temperature and		
	pressure		
	Does not have the same empirical formula as	1	

the monomers/ different composition by mass of monomer	

Section B Asswers

Q/N o.	Answer	Marks	Remarks/ Markers Comments
1(a)(i)	2H₂O+2e 2OH⁺+H₂	[1]	Many candidates failed to extract the relevant information from the text which states that reduction of water happens in the cathode.
(ii)	Graphite is cheaper than titanium. OR Graphite is easier to obtain than titanium	[1]	Common mistake is "Graphite is inert". This answer is not acceptable as Ti is relatively inert too. To consider 1. cost, 2 safety, 3 environment
(b)	Oxidation state of CI increases from 0 in Cl_2 to +1 in $ClO^-/+5$ in $ClOl_3^ Cl_2$ is oxidised.	[1]	Candidates need to be mindful that they have to know how to calculate the oxidation states. Some candidates are still unable to calculate to determine the correct oxidation states.

		1 141	
	Oxidation state of Cl decreases from 0 in Cl ₂ to -1 in Cl. Cl ₂ is reduced.	[1]	·
(c)(i)	2NaC/+ 2H₂0 - C/₂ + 2NaOH + H₂	[1]	Only few candidates manage to get this correct. Candidates need to be mindful of extracting relevant data.
(u)	Number of males of NaC/ = 2 000 000 × 0.25 / (23 + 35.5) = 8547.00855 moles	[1]	Candidates need to be mindful of extracting relevant data as most candidates failed to read that only 25% of brine consists NaCl.
	Number of moles of H₂ = 4273.5 moles	[1]	
	Volume of H ₂ = 4273.5 x 24 = 102 564 = 103 000 dm ³	[1]	Allow ECF from here.
(d)	Membrane cell operates at a lower voltage as compared to diaphragm cell, hence cheaper to operate.	[1]	Accepted answers include: 1. lesser electricity 2. higher purity higher concentration 3. 2 to 3 years of replacement of membrane vs frequent replacement Reject answers: 1. Cheap to construct (unless candidates mention that it is due to lower voltage) 2. Inexpensive = cheap and hence, elaboration has to be made

	and the second s		otherwise, no marks will be awarded.
(e)	Agree. Bromide ions are discharged in preference to hydroxide ions due to concentration effect and hydrogen lons are discharged in preference to sodium ions. Sodium ions and hydroxide ions remain behind. OR The NaOH collected will be contaminated by the Br- ions.	[1]	Some candidates only mention that hydrogen and bromine gas are formed without any details on discharging of the ions.
2(a)	Student 2 is correct and student 1 is incorrect. When the metal ion has a charge of 2+ in carbonate such as calcium carbonate, the mass loss is 0.70g. When the metal ion has a charge of 1+ in carbonate such as sodium carbonate, there is no mass loss. However, it was also shown that when the metal ion has a charge of 2+ in carbonate such as copper (II) carbonate, the mass loss was 1.05g. Thus, it cannot be concluded that the thermal stability is dependent on the charge of the metal ion. Sodium being more reactive than calcium which is more reactive than copper, shows that there is a greater	[1] [1]	Marks are awarded when candidates talk about both student 1 and student 2. [2m] The last 1m is given when candidates quote data. Many candidates had a poor explanation. Example, "calcium more reactive than zinc and hence, it / calcium is more thermal stable" / "Calcium carbonate is more reactive than zinc carbonate". Candidates need to take note that thermal stability is referring to the metal carbonate and not the metal. Vague explanation or ambiguous explanation will not score.

mass loss in metal carbonate which contains a less reactive metal.

Example: No mass loss for sodium carbonate but a mass loss of 0.70g for calcium carbonate and 1.05g for copper(li) carbonate.

Hence, student 2's conclusion is correct.

Alternative 1

Student 1 is correct but student 2 is incorrect.

Na ion has a charge of +1 and its carbonate did not decompose. Other carbonates in the table consists metal ions of charge +2 and its carbonate decompose, as shown by the decrease in mass loss. Eg: Zinc carbonate has a decrease in 0.70 g as zinc carbonate decompose to form zinc oxide and carbon dioxide. This shows that thermal stability of metal carbonate is dependent on the charge of the metal ion.

Calcium more reactive than zinc but calcium carbonate has a higher mass loss of 0.88 g when being heated as compared to zinc carbonate with mass loss of 0.70 g. This shows that more reactive the metal, the metal carbonate is not more thermal stable.

Alternative 2

Both students are incorrect.

When the metal ion has a charge of 2+ in carbonate such as calcium carbonate, the mass loss is 0.70g. When the metal ion has a charge of 1+ in carbonate such as sodium carbonate, there is no mass loss. However, it was also shown that when the metal ion has a charge of 2+ in carbonate such as copper (I) carbonate, the mass loss was 1.05g. Thus, it cannot be concluded that the thermal stability is dependent on the charge of the metal ion. (Student 1 is incorrect) Calcium more reactive than zinc but calcium carbonate has a higher mass loss of 0.88 g when being heated as compared to zinc carbonate with mass loss of 0.70 g. This shows that more reactive the metal, the metal carbonate is not more thermal stable. (Student 2 is incorrect) (b)(i) 2NH ₆ Ci + CaO - CaCl ₂ + 2NH ₅ + H ₂ O Ammonia is fermed and is released to			i	
2NH ₄ Cl + CaO - CaCl ₂ + 2NH ₃ + H ₂ O [1] Ammonia is formed and is released to Candidates failed to include balanced equation. Some candidates faced	(b)(i)	in carbonate such as calcium carbonate, the mass loss is 0.70g. When the metal ion has a charge of 1+ in carbonate such as sodium carbonate, there is no mass loss. However, it was also shown that when the metal ion has a charge of 2+ in carbonate such as copper (ii) carbonate, the mass loss was 1.05g. Thus, it cannot be concluded that the thermal stability is dependent on the charge of the metal ion. (Student 1 is incorrect) Calcium more reactive than zinc but calcium carbonate has a higher mass loss of 0.88 g when being heated as compared to zinc carbonate with mass loss of 0.70 g. This shows that more reactive the metal, the metal carbonate is not more thermal stable. (Student 2	[2]	No key: minus [1] overall
Ammonia is formed and is released to Candidates failed to include balanced equation. Some candidates faced	(11)	2NH4C/+ CaO - CaC/- 2NH- + H-O		Eqn link to statement
		-	[1]	
			12	

	the surrounding. Hence, nitrogen content in the soil is decreased.		difficulty in writing the correct products.
(iii)	In molten state, the giant ionic lattice of calcium oxide breaks down.	[1]	
•	The oppositely charged / Ca ²⁺ and O ²⁻ are no longer held in fixed positions and move relatively freely to carry the electric current.	[1]	
•.	Hence, suitable to be used as electrolyte.		
(lv)	Positive electrode: 20°(/) - 0 ₂ (g) + 4e	[1]	With correct state symbols.
	Negative electrode: Ca ²⁺ (/) + 2e - Ca(/) Note: for overall equation, the number of electrons must be first balanced: 2CaO - 2Ca + O ₂	[1]	Candidates have problem with writing the correct state symbols and balancing the equation for the positive electrode. Some candidates mention hydroxide ions are discharged.
Eithe	Group VII elements are non metals	[1]	No marks are awarded if candidates just
r 3(a)(which gain electrons to achieve noble		mention about gaining or losing of electrons.
i)	gas configuration while Group i elements are metals which lose valence electrons to achieve octet configuration.		Marks will be awarded if candidates link gaining/losing due to the metallic or non metallic character or the idea of achieving noble gas configuration.
			Some candidates did not talk about Group I.
(ii)	Down the group, the oxidising power	[7]	
	decreases because the elements		

	down the group has lower tendency	[1]	
-	to gain electrons.		
	*Recall, reactive of the halogens		
·	decreases down the group because		
	the attraction power for electron of the		
	atom decreases down the group as		<u>r</u>
	the atomic size increases.		
(iii)	Colourless solution turns reddish- brown.	[1]	the original colour and the final colour must be mentioned.
	Cl ₂ + 2Br Br ₂ + 2Cl- Chlorine more reactive than bromine	[1]	lonic equation to be supported by explanation.
	displace bromine from aqueous potassium bromide to form a reddish brown bromine solution.		Candidates are still facing difficulty in constructing the correct ionic equation. Some candidates are unable to write the correct observation.
(iv)	Across the period, the electronegativity increases (from 0.93 to 3.16).	[1]	Candidates need to pay attention to the command word of the question—"describe the trend", hence data should be quoted. However, since the trend is obvious and it was only a 1 mark question; credit is given to all candidate.
(v)	Disagree. Across the period, the number of electron shell remains as 3 but electronegativity increases.	(1)	change is rejected: direction of change e.g. increase/decrease/lower/larger etc. must be specified.
(b)	Down Group I, melting point of elements decreases from 180°C to 64°C while down Group VII, melting	[1]	Candidates need to pay attention to the command word of the question - "Using information provided", hence data should be quoted.

	point increase from -101°C to 114°C.	[1]	
	Down Group I, the metallic bond becomes weaker. Thus, lesser energy needed to overcome the bond. Down Group VII, the intermolecular forces of attraction becomes stronger (because the molecular size becomes bigger). Thus, more energy needed to overcome the intermolecular forces of attraction.		As the atomic size increases, the valence electrons are further away from the positive metal nucleus, hence the attraction force becomes weaker and thus the metallic bond becomes weaker. *bond is different from force. eg. no BOND is present between molecules. ONLY forces of attraction are present before molecules.
Or 3(a)(i)	Number of moles of ethanoi = (1/46) = 0.021739 mol Enthalpy change of combustion of ethanoi = 0.021739 x -1367 = - 29.7kJ/g Thus, hydrogen gives greater output.	[1] [1]	Allow ecf Surprisingly, some candidates do not know how to solve such question despite such question has appeared in O level many times. Some candidates failed to cite the units or forgot the negative sign. Marks are awarded if students did include negative sign but clear statement such as "Energy output", "Energy released" is used.
(ii)	More energy is released during the formation of bonds in water than the total energy absorbed during bond		[1]: idea of more energy released than absorbed

	breaking in hydrogen and oxygen.		[1]: reactants & products mentioned / specific bonds mentioned. Many candidates forgot that oxygen is one of the reactants. Some candidates talked about formation of carbon dioxide.
(iii)	During photosynthesis, sugar cane takes in the carbon dioxide. Hence, carbon dioxide produced from burning of fuel will not result in increase in amount of carbon dioxide being added.	[1]	This question was generally well attempted.
(b)(i)	Hydrogen ion has one single proton in its nucleus but no electrons at all.	[1]	No marks are awarded if candidates just mention because hydrogen ion has +1 charge, like a proton. Clear explaination is expected from candidates to mention idea about protons and electrons.
(lii)	A to B	[1]	This question was generally well attempted.
(ili)	2H ₂ + O ₂ 2H ₆ O	[1]	This question was generally well attempted.
(iv)	reactants activation energy products Progress of	al is	[1] Formula of reactants and products, label for enthalpy change [1] showing an exothermic energy profile diagram with correct axis.

Class:	Register No:	Name:	
	PR	SECONDARY FOUR ELIMINARY EXAMINATION	2016
CHEMISTR			5073/01 29 AUGUST 2016
Paper 1 Mu	Itiple Choice	· · · · · · · · · · · · · · · · · · ·	1 hour
READ THE	SE INSTRUCTIONS FIF	RST	
Do not ope	n this booklet until you	are told to do so.	
Write in soft	t pencil.		
Do not use	staples, paper clips, higl	nlighters, glue or correction flu	uids.
Write your r	name, index number and	class on the answer sheet in	the spaces provided.
i .	orty questions on this pa e answers, A, B, C and	aper. Answer all questions. Fo	or each question, there are
Choose the sheet.	one you consider corre	ct and record your choice in s	soft pencil on the answer
Each correc	ct answer will score one	mark. A mark will not be dedu	ucted for a wrong answer.
Any rough	working should be done	in this booklet	
A copy of the	ne Periodic Table is print	ed on page 2.	

The Periodic Table of the Elements

		_							Γ			Τ		_	-				Г		_			
	0	4	욷	hellum	2	20	Š	10 negr	40	_	argon 18	\$	호	krypto	æ	131			1	돌	Radon 86			
	IIV					19	ட	fluorine 9	36.5		chlorine 17	8	ద	promine	8	127		lodine 53	3	¥	astatine 85			
,	N					16	0	охудел 8	32	တ	sulfur 16	79	å	minajas	34	128	<u>1</u> 0	tellurtum 52	1	8	polonium 84			
	٨							nitrogen 7	31	<u>a</u>	phosphorus 15	75						antimony 51	209	ద	bismuth 83			
	M					12	ပ	carbon 6	88	ফ	silicon 14	E	B	permanlum	22	119					lead 82			
	=					=	<u>~</u>	boron 5			afuminium 13		Sa	gaillum	3	115	드	indlum 49	204		thallium 81			
					•	J			•			99	Ŋ	ziro	8	112	ਣ	cadmium 48	201	완	merany 80			
												64	ਠੋ	орраг	ଛ	108		aliver 47	197	Ρſ	98d 73			
g												83	Z	nicke	28	106	Pd	palladium 46	195	武	pletinum 78			
Group												29	8	oobalt	27	103	듄	modium 45	192	<u>,</u>	irldium 77			
		-	I	hydrogen	_								3.		28	101	₽	nuthenium 44	190	ő	osmlum 76			
					-							1	Æ	manganesa	22	ī	<u>2</u>	technetium 43	186	æ	rhentum 75			
												52	ర	chromium	24	96	₩	nolybdenum 42	\$	≥	tungsten 74			
												51	>	vanadium	ន	83	£	niobíum 41	181	L B	tantalum 73			
												48	F	titanium	2	91	Z	zirconium 40	178	兰	m hafnlum tantalum 72 73			
												8	လွ	xendiu	T	8	>	yteign 1907	139	2	anthanu 77	1	Ac	adinium 89 †
	=					6	æ	beryllium 4	24	Mg	magneslum 12	40	ပီ	oalcium	20	88	స	strontium 38	137	Ba	barlum 56	1	Ra	radium 88
	_					7	=	3. Ehlum	23	S S	sodium	39	ᅩ	potassium	9	85	윤	rubidium 37	133	ඊ	cæsium 55	1	正	franclum radium 87

*58-71 Lanthanoid series †90-103 Actinoid series

175	3	Litetium		1	ت	wendum	8
173	ę	tterblum	0	1	운	al miledor	20
	Ę				Md	5	- 1
•	ш		ļ		튠		1
166	웃	holmium		1	ű	Ę	
162	፩	dysproslum	99	ŧ	ರ	californium	88
159	P	terbium	65		益		
157	g	gadolinium	¥	3	క్ర	curium	88
162	귭	europium	83	1	Am	amaricium	96
150	æ	samarlum	82	1	3	plutonlum	B
,	F	methium		1	£	neptunium	83
4	2	neodymium	90	238		uranium	- 1
,	占	-		ŧ	ъ С	protactinium	91
140	පී	Ce rium	28	232	f	thorium	8
				a = relative atomic mass	X = atomic symbol	b = proton (atomic) mimber	
			:	В	>	<	q
				Key	•		

1. Which method(s) below canbe used to collect an acidic gas X which is denser than air?

1.

2.

3.

- A 1 only
- C 1 and 3

- B 2 only
- D 2 and 3
- 2. A student did a chromatography experiment and obtained the chromatogram below.

Using the information given, calculate the $R_{\mbox{\scriptsize f}}$ value for the less soluble spot.

- A y/x
- $\mathbf{B} = x/\mathbf{j}$
- $c_{y/2x}$
- D = 2x/y

3. The diagram shows an experiment for the formation of gas X.

Test tube Y contains potassium hydroxide, magnesium nitrate and aluminium foil.

Test tube Z contains universal indicator. Test tube Y is warmed and gas X is formed.

Which statements below are correct about the reaction above?

- 1. Universal indicator in test tube Z turns blue.
- 2. The test can be repeated using sodium hydroxide instead of potassium hydroxide for the same outcome.
- 3. Gas X causes acid rain.

A 1 and 2

B 1 and 3

C 2 and 3

D 1, 2 and 3

- 4. Which reaction does not produce a colourless solution at the end of the reaction?
 - A Adding hydrogen peroxide into potassium manganate(VII).
 - **B** Ethene gas is bubbled into bromine water.
 - C Bubbling chlorine gas into potassium bromide solution.
 - **D** Excess magnesium is added into iron(II) chloride.
- 5. Excess silver nitrate is added to sodium chloride solution and the mixture is filtered.

Which ions will be found in the filtrate?

A Na⁺ and CI

B CI, Na⁺ and Ag⁺

C CI, NO₃, and Na[†]

D Ag⁺, NO₃⁻ and Na⁺

6. Which substance could be condensed when it passes through a Liebig Condenser filled with water?

	substance	melting point / °C	boiling point / °C
Α	propane	-190	-45
В	pentane	-130	38
С	carbon dioxide	-56.6	-78.5
D	butane	-135	0

7. The melting and boiling point of methane is -183 °C and -161 °C respectively.

Which diagram below shows the arrangement of the particles at-170 °C?

Α

В

C

D

- 8. Which pair of substances below are isotopes?
 - A ${}^{35}_{17}$ Cl and ${}^{37}_{17}$ Cl
 - B nitrogen monoxide and nitrogen dioxide
 - C diamond and graphite
 - D CH₃ H₂C—CH₃
 HC—CH₃ and CH₂
 CH₂ CH₂

	Which statement best explains why calcium oxide, CaO, has a higher melting point than potassium bromide, KBr?										
	A Calcium oxide is a covalent compound and potassium bromide is an ionic compound.										
	В	Calcium is less reactive than potas									
	С	ger than that between K⁺ and Br⁻.									
	D	The melting point of potassium is lo	wer than	calcium.							
10.	Hydrazine is commonly used to make sodium azide, an important compound in air bags. The empirical formula of hydrazine is NH ₂ . 0.8 g of hydrazine occupies a volume of 600 cm ³ at room temperature and pressure.										
	Wh	at is the molecular formula of hydrazi	ne?	,							
	Α	NH ₂	В	N ₂ H ₂							
	С	N₂H₄	D	N_3H_6							
	In a	-hamiaal plant mantana is arooked a									
11.	ligh pen	the mical plant, pentane is cracked a ted splint with a 'pop' soundis product tane undergoes cracking. at is the mass of ethene produced?	ed. In a p	thene and a gas that extinguishesa articular reaction, 7200 kg of							
11.	ligh pen	ted splint with a 'pop' soundis product tane undergoes cracking.	ed. In a pa	thene and a gas that extinguishesa articular reaction, 7200 kg of 7 x 10 ⁶ kg							
11.	ligh pen Wh	ted splint with a 'pop' soundis production tane undergoes cracking. at is the mass of ethene produced?	ed. In a pa	articular reaction, 7200 kg of							
	ligh pen Wh A C	ted splint with a 'pop' soundis production tane undergoes cracking. at is the mass of ethene produced? 7 x 10 ³ kg	ed. In a pa B D	articular reaction, 7200 kg of $7 \times 10^6 \text{kg}$ $1.96 \times 10^6 \text{kg}$							
	ligh pen Wha	ted splint with a 'pop' soundis product tane undergoes cracking. at is the mass of ethene produced? 7 x 10 ³ kg 1.96 x 10 ⁵ kg	ed. In a pa B D roxide in a	articular reaction, 7200 kg of 7 x 10 ⁶ kg 1.96 x 10 ⁶ kg 250 cm ³ of water.							
	light pen Wha A C A st	ted splint with a 'pop' soundis product tane undergoes cracking. at is the mass of ethene produced? 7 x 10 ³ kg 1.96 x 10 ⁵ kg sudent dissolves 1.71 g of barium hydet is the concentration of hydroxide io	ed. In a page B D roxide in a	articular reaction, 7200 kg of 7 x 10 ⁶ kg 1.96 x 10 ⁶ kg 250 cm ³ of water.							
	light pen Wha A C A st	ted splint with a 'pop' soundis product tane undergoes cracking. at is the mass of ethene produced? 7 x 10 ³ kg 1.96 x 10 ⁵ kg sudent dissolves 1.71 g of barium hyd	ed. In a page B D roxide in a	articular reaction, 7200 kg of 7 x 10 ⁶ kg 1.96 x 10 ⁶ kg 250 cm ³ of water. solution?							
12.	light pen What A C A st What A C	ted splint with a 'pop' soundis product tane undergoes cracking. at is the mass of ethene produced? 7 x 10 ³ kg 1.96 x 10 ⁵ kg udent dissolves 1.71 g of barium hyd at is the concentration of hydroxide io 0.00004 mol/dm ³	B D roxide in 2 ns in the 3	7 x 10 ⁶ kg 1.96 x 10 ⁶ kg 250 cm ³ of water. solution? 0.04 mol/dm ³ 0.08mol/dm ³							
12.	light pen What A C A st What A C The hae	ted splint with a 'pop' soundis product tane undergoes cracking. at is the mass of ethene produced? 7 x 10 ³ kg 1.96 x 10 ⁵ kg and the concentration of hydroxide in the concentration of hydroxide in 0.00004 mol/dm ³ 0.00008mol/dm ³ percentage by mass of iron in haemone tane undergoes the concentration of hydroxide in the concentration of hydroxide in 0.00008mol/dm ³	B D roxide in the B D oglobin is	7 x 10 ⁶ kg 1.96 x 10 ⁶ kg 250 cm ³ of water. solution? 0.04 mol/dm ³ 0.08mol/dm ³							
11. 12.	light pen What A C A st What A C The hae	ted splint with a 'pop' soundis product tane undergoes cracking. at is the mass of ethene produced? 7 x 10³ kg 1.96 x 10⁵ kg udent dissolves 1.71 g of barium hydrotis the concentration of hydroxide io 0.00004 mol/dm³ 0.00008mol/dm³ percentage by mass of iron in haemonoglobin molecule is 68,000 g/mol.	B D roxide in the B D oglobin is	7 x 10 ⁶ kg 1.96 x 10 ⁶ kg 250 cm ³ of water. solution? 0.04 mol/dm ³ 0.08mol/dm ³							

14. Two electrolytic cells are connected as shown in the diagram.

Cell 1:Pis a copper electrode whileQisa platinum electrode immersed in dilute copper(II) chloride solution.

Cell 2: R is a platinum electrode while S is a copper electrode immersed in concentrated copper(II) chloride solution.

- 1. There is a higher mass gain in Q than S.
- 2. Both P and R electrodes decrease in mass.
- 3. Both Cell 1 and 2 electrolytes fade in colour.

Which of the above statement(s) is/are true?

A 1 and 2

B 1 and 3

C 2 and 3

- D None of the above
- 15. A student sets up an electrochemical cell experiment as shown.

Three different metals, X, Y and Z were used and the voltage obtained is shown in the following table.

electrochemical Cell	metal A	metal B	voltage/ V		
1	Υ	Z	+ 1.60		
2	Z	Х	- 1.06		

Which of the following correctly arranges metals X, Y and Z in increasing reducing power?

- A Y, X, Z
- **B** Y, Z, X
- C Z, Y, X
- D Z, X, Y

16. The NASA space shuttle uses hydrogen fuel cells to generate electricity as shown in the diagram.

Which half-equation represents the reaction that takes place at the positive terminal of the fuel cell?

- **A** $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$
- **B** $4OH^{-}(aq) \rightarrow O_{2}(g) + 2H_{2}O(l) + 4e^{-}$
- C $H_2(g) + 2OH^-(aq) \rightarrow 2H_2O(l) + 2e^-$
- **D** $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$
- 17. A student conducted two experiments between hydrochloric acid and excess sodium hydroxide. The volume and concentration of hydrochloric acid used are as follows:

Experiment I: 20 cm³ of 1.0 mol/dm³ of hydrochloric acid Experiment II: 20 cm³ of 2.0 mol/dm³ of hydrochloric acid

She plotted a graph of temperature against time for the experiment.

Which graph best represents the change of temperature with time for the experiment?

D

18.	Whic	h of the following is an example of endoth	nermic	process?			
		. boiling . freezing . melting					
	Α	1 only	В	2 only			
	С	1 and 2	D	1 and 3			
19.	Ethe	ne undergoes halogen addition as shown	in the	e equation below.			
		$C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$	ΔH = ·	-115 kJ/mol			
	Whic	h statement about the reaction above is t	rue?				
	A	The product has higher energy level tha	n the	reactants.			
	В	It is an exothermic reaction as more bonds are formed than bonds broken.					
	С	It is an endothermic reaction as the reaction required the presence of UV light.					
	D	The bond energy absorbed to break the to form the bonds.	bond	is less than the energy released			
20.	Whice react	ch substance, when added to aqueous iro	n(II) c	hloride, takes part in a redox			
	Α	ammonia	В	fluorine			
	С	silver nitrate	D	sodium hydroxide			
21.	Give	n the following reaction:		-			
		$2MnO_4^-(aq) + 5H_2O_2(aq) + 6H^+(aq) -$	→ 5O ₂	$(g) + 2Mn^{2+}(aq) + 8H_2O(l)$			
	Whic	ch statement about the reaction above is	true?				
	Α	H_2O_2 is reduced to form O_2 .					
	В	H_2O_2 is oxidised to form H_2O .					
	С	H ₂ O ₂ is oxidised and reduced at the same	ne tim	ie.			
	D.	H ₂ O ₂ is not oxidised nor reduced.					

22. A student conducted an experiment to find out the speed of reaction between different acids with potassium carbonate.

She repeated the experiment with excess potassium carbonate using the following reagents:

Experiment I: 20 cm³ of 1.0 mol/dm³ ethanoic acid Experiment II: 20 cm³ of 1.0 mol/dm³ hydrochloric acid

Which volume of gas produced against time graph best represents the two reactions?

A

В

C

D

- 23. Which statement(s) is/are true about the activation energy of a chemical reaction?
 - 1. It can be reduced by the use of catalyst.
 - 2. It can be reduced by increasing the temperature.
 - 3. It is directly proportional to the enthalpy change of the reaction.
 - A 1 only

B 1 and 2

C 1 and 3

- **D** 1, 2 and 3
- 24. Which of the following is a use of sulfuric acid?
 - A sterilising water
 - B making fertilisers
 - C as food additives
 - D as antacid for relieving gastric pain
- 25. Which substance does not produce silver nitrate when added to dilute nitric acid?
 - A silver carbonate

B silver oxide

C silver

D silver hydroxide

26. The equation for Haber Process is given as follows:

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ/mol}$

Which statement about the process above is true?

- A Nitrogen used is obtained from the fractional distillation of liquid crude oil.
- B Hydrogen used is obtained from hydrogenation of alkene.
- C The yield of the reaction is always lower than 100% as it is reversible.
- D The reaction is exothermic as energy is absorbed to break the strong triple bond in nitrogen.
- 27. The atomic and ionic radii of some Period 3 elements are given below.

element	atomic radius / pm	ionic radius / pm
W	186	102
X	145	65
Y	79	181

Which statement about the elements above is not true?

- A W has a higher tendency to lose electron than X.
- B W forms an ionic compound with Y.
- C X shares electrons with Y to form a covalent compound.
- D The ionic radius of W decrease as W forms ions by losing electrons.
- 28. The electronic configuration of three ions, X⁺, Y⁺ and Z are shown below.

What can be deduced from the electronic configurations above?

- A X and Z are from the same group.
- B X is from period 2.
- C Y is more reactive than X.
- D Y and Z form acidic oxides.

29. Element Q can be oxidised to form solid products as follows:

formula of the products	colour of the products
QO	Black
Q ₂ O	Red

Which statement about Q is true?

- A Q is a transition metal.
- **B Q** is in group I of the Periodic Table.
- C Q is in group II of the Periodic Table.
- Q is a non-metal which can be found in either Group V or VI of the Periodic Table.
- 30. Which observation most strongly suggests that a solid element X is a metal?
 - A X forms.an acidic oxide.
 - B X forms a basic oxide.
 - C X can conduct electricity in solid state.
 - D X reacts vigorously with water.
- **31.** The diagram shows a method of protecting the iron in an underground steel pipe from rusting.

Which statement best explains how this method works?

- A The iron in steel loses electrons to graphite as it is more reactive.
- B The iron in steel undergoes oxidation as it is more reactive.
- C Electrons are flowing to graphite anode to prevent the iron in steel from oxidising.
- **D** Electrons are flowing to iron in steel to prevent the oxidation of iron in steel.

32. A student found out the following properties of element R:

- 1. Oxide of element R is amphoteric.
- R can only be extracted from its ore by the electrolysis of molten compound of R.

What could element R be?

A aluminium

B calcium

C lead

D zinc

33. Which statement(s)is/are true about CFCs?

- 1. Increasing their concentration will increase the Earth's temperature.
- 2. Increasing their concentration will deplete the ozone layer.
- 3. Increasing their concentration will increase the occurrence of skin cancer in human being.

A 2 only

B 1 and 2

C 1 and 3

D 2 and 3

34. The diagram below represents the process of fractional distillation of crude oil.

Which statement about the fractional distillation of crude oil is incorrect?

- A pure compound is obtained at each level of the column.
- B The fraction collected at the top of the column have the lowest melting point.
- C The fraction collected at the bottom of the column are the least flammable.
- D The molecules reaching the top of the column have the smaller relative molecular masses.

35. Three pairs of compounds are shown below:

1.

2.

3.

Which pair(s)of compounds is/are isomers?

A 1 only

B 2 only

C 1 and 2

- D 2 and 3
- 36. Which substance reacts with ethene but not ethane?
 - A bromine

B magnesium

C hydrogen

D oxygen

37. Ethanol can be prepared through hydration of ethene and fermentation of glucose.

Which statement below best explains why pure ethanol cannot be produced through fermentation?

- A Fermentation requires an optimum temperature of 37 °C.
- B Fermentation requires an anaerobic condition.
- C Fermentation produces a by-product, carbon dioxide.
- **D** Yeast denatures when the concentration of alcohol reaches 12 15% by volume.

38. Maleic acid is commonly used in pharmaceutical industries to make drugs more stable. The structure of maleic acid is shown.

Which molecule is produced if the above molecule undergoes esterification with ethanol under suitable conditions?

Α

В

C

D

- 39. Which of the following remains unchanged during addition polymerisation?
 - A density

B empirical formula

C melting point

D molecular formula

40.

Which polymer is formed if the above molecule undergoes polymerisation?

1

2.

3.

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\$$

1 only Α

В 2 only

C 1 and 3 only

2 and 4 only D

-