NAME:	() CLASS:	
-------	------------	--

PRELIMINARY EXAMINATION 2016 SECONDARY 4 EXPRESS

CHEMISTRY 5073/01

Paper 1

Date: 22 August 2016 Duration: 1 hour

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces at the top of this page.

There are forty questions on this paper. Answer all questions. •

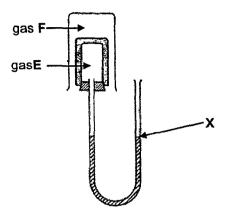
For each question, there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate OTAS sheet.

Read very carefully the instructions on the OTAS.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

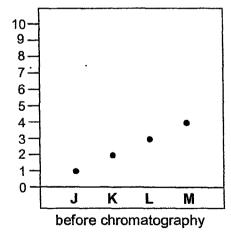
Any rough working should be done in this question paper.


Hand in your OTAS at the end of the paper.

A copy of the Periodic Table is printed on page 16.

NAME:	_() CLASS:	
-------	-------------	--

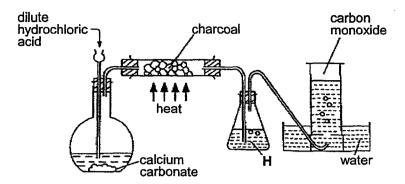
Answer all questions. Record your answer on the OTAS sheet provided.


1 The apparatus below consists of a porous pot containing gas E which is surrounded by gas F in a beaker.

Which pair of gases would cause the water level at Xto move upwards initially?

	Gas E	Gas F
Α	ammonia	carbon monoxide
В	carbon dioxide	hydrogen
C	ethene	nitrogen
D	oxygen	propane

2 Dyes J, K, L and M were placed on four spots on the chromatography paper and run using a solvent. The diagram on the left shows the positions of the spots before chromatography while the diagram on the right shows the position of the spots after chromatography.


solvent 10 front 9 -8 7 6 5 4 3 2 1 -0 J K M after chromatography

Which two dyes are identical?

- A J and K
- B K and L
- C K and M
- D L and M

NAME:	()	CLASS:
-------	-----	--------

3 The diagram shows apparatus used to obtain carbon monoxide.

What is the main purpose of H?

- A to dry the gas
- B to prevent water being sucked back on to the hot carbon
- C to remove carbon dioxide from the gas
- D to remove hydrogen chloride from the gas
- A sample of reddish-brown powdery solid was placed in a beaker containing water and stirred. The contents of the beaker are then filtered to obtain a black residue. The filtrate is then evaporated to dryness, leaving behind a red solid.

Which statement is true?

- A The black solid is an element.
- B The red solid is an element.
- C The reddish brown solid is a compound.
- D The reddish brown solid is a mixture.
- 5 An element, T, has p protons and n neutrons in its nucleus.

Which row gives a possible correct number of protons, neutrons and electrons in a negative ion of an isotope of T?

	protons	neutrons	electrons
Α	р	n + 1	p+1
В	р	n+1	p – 1
С	p + 1	n	p+1
D	p + 1	n	p – 1

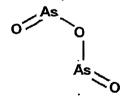
NAME:		(
-------	--	---

CLASS:

6 Germanium is found in Group IV of the Periodic Table.

Which compound of Germanium is unlikely to exist?

- A Ge₂H₆
- B GeN₃
- C GeO
- D GeS₂
- 7 The table shows physical properties of three substances, R, S and T.


substance m	melting point	electrical conductivity		
	/°C	at 0°C	at 1000°C	
R	860	poor	good	
S	98	good	good	
T	3640	good	good	

)

What could substancesR, S and T be?

	R	S .	7
Α	calcium	zinc	copper
В	calcium oxide	mercury	diamond
С	potassium fluoride	sodium	graphite
D	sulfur	iodine	titanium

8 The bonding in arsenic trioxide can be represented by the structure shown.

What is the total number of electrons not involved in bonding?

- **A** 12
- **B** 22
- C 28
- **D** 78
- 9 Gas **G** has a density of 1.17g/dm³ at room temperature and pressure.

What is gas G?

- A ammonia
- B carbon dioxide
- C nitrogen
- D oxygen

NAME:	 ()	CLASS:

10 The contents of three beakers shown are poured together and mixed to obtain a homogeneous solution.

beaker 1	beaker 2	beaker 3
50cm ³ of	250cm ³ of	
1.0mol/dm ³ of	1.0mol/dm ³ of	0.2dm ³ of water
NaC <i>l</i>	MgCl ₂	

Which option shows the correct concentration of ions, in mol/dm³, of the resulting solution?

	Na ⁺	Mg ²⁺	CI
Α	0.05	0.25	0.50
В	0.05	0.25	0.60
С	0.10	0.50	1.00
D	0.10	0.50	1.10

11 The relative molecular masses of copper(II) sulfate, CuSO₄, and water are 160 and 18 respectively.

What is the percentage by mass of water in hydrated copper(II) sulfate, CuSO₄.5H₂O?

- $A \quad \frac{18 \times 100}{160}$
- B 5×18×100
- D $\frac{5 \times 18 \times 100}{160 + (5 \times 18)}$
- 12 Which method of salt preparation produces the best yield of calcium sulfate?
 - A add dilute nitric acid to calcium carbonate followed by dilute sulfuric acid
 - B add solid calcium carbonate to dilute sulfuric acid
 - C heat calcium carbonate to complete decomposition followed by addition of sulfuric acid
 - D mix silver sulfate solution with calcium chloride solution

NAME:	() CLASS:	
-------	---	----------	--

The dissociation constant for an acid indicates the extent to which it dissociates into ions. The higher the dissociation constant, the stronger the acid.

The dissociation constants for some acids are stated in the table along with two possibly correct statements.

acid	dissociation constant
methanoic acid, HCO₂H	1.80 × 10 ⁻⁴
ethanoic acid, CH ₃ CO ₂ H	1.75 × 10 ⁻⁵
propanoic acid, CH ₃ CH ₂ CO ₂ H	1.34 × 10 ⁻⁵
chloroethanoic acid,	1.40 × 10 ⁻³
CICH ₂ CO ₂ H	

statement 1	Increasing the length of the carbon chain makes the acid stronger.
statement 2	Replacing a hydrogen atom with a chlorine atom in ethanoic acid makes the acid stronger.

Based on the data above, which statements are correct?

- A both statements
- B statement 1 only
- C statement 2 only
- **D** neither statement
- 14 Three aqueous solutions have pH values shown in the table.

solution	Х	Υ	Z .
рН	3	5	6

- Solution Y reacts with an alcohol to form an ester.
- Il Mixing solution X and solution Y gives a solution with a pH value of 4.
- III Mixing solutions X, Y and Z in equal volume gives an acidic solution.

Which statement is true for X, Y and Z?

- A lonly
- B II only
- C III only
- D none of the statements
- 15 In which reaction is the underlined substance acting as a reducing agent?
 - A <u>chlorine</u> + iron(II) chloride → iron(III) chloride
 - B hydrogen + $\underline{\text{copper}(II)}$ oxide \rightarrow copper + water
 - C <u>hydrochloric acid</u> + magnesium oxide → magnesium chloride + water
 - D zinc oxide + carbon monoxide → zinc + carbon dioxide

NAME:	() CLASS:
	

16 Talc is a mineral which has the formula Mg₃Si₄O₁₀(OH)₂.

What is the oxidation state of silicon?

- A -4
- B -2
- C +2
- D +4
- 17 The table shows a series of experiments carried out on the compounds of four metals, E, F, G and H.

	Experiment				
Metal	metal carbonates heated under inert conditions	metal oxides heated with carbon	metal oxide heated with hydrogen		
E	carbon dioxide evolved	no reaction	no reaction		
F	no reaction	no reaction	no reaction		
G	carbon dioxide evolved	reduced	reduced		
Н	carbon dioxide evolved	reduced	no reaction		

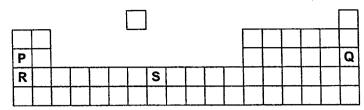
Arrange the metal in increasing order of reactivity.

- A F, E, H, G
- B F, H, E, G
- C G, E, H, F
- D G, H, E, F
- 18 Alloys are usually harder than the metals which they are made from.

Which statement best explains the hardness of the alloy?

- A The atomic radii of the metal and the other elements present in the alloy are different.
- B The other elements present in the alloy are of a lower reactivity than the metal.
- C The other elements present in the alloy have a higher density than the metal.
- **D** The relative atomic masses of the metal and the other elements present in the alloy are different.
- 19 Scrap iron is often recycled.

Which reason for recycling is not correct?


- A It reduces the amount of pollution at the site of the ore extraction.
- B It reduces the amount of waste taken to landfill sites.
- C It reduces the need to collect scrap iron.

NAME:	[]	ì
147714:	 	,

CLASS:

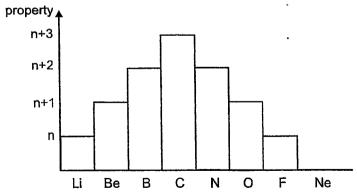
D It saves natural resources.

20 The positions of four elements, P, Q, R and S, are shown on part of the Periodic Table.

Arrange the elements in order of decreasing melting point.

A Q, P, R, S

B Q, R, P, S


C S, P, R, Q

D S, R, P, Q

Vanadium is a transition metal which is commonly used to produce alloys such as steel. It does not react with water or steam. When heated, vanadium reacts with oxygen to form vanadium(IV) oxide and vanadium(V) oxide. These oxides react with both acids and alkalis.

Which property suggests that vanadium is a transition metal?

- A Vanadium forms oxides which are amphoteric in nature.
- B Vanadium forms oxides with oxidation states of +4 and +5.
- C Vanadium is unreactive to water or steam.
- D Vanadium is used to produce alloys.
- 22 The bar chart shows how a property of Period 2 elements varies across the period.

Which property of these elements is shown on the chart?

- A charge of ion
- B number of electron shells
- C number of valence electrons
- D valency

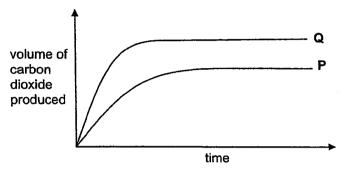
23 The table shows the energy released by complete combustion of some fuels.

fuel	formula	enthalpy change of combustion, kJ/mol
methane	CH₄	-880
ethanol	C ₂ H ₅ OH	-1380
propane	C₃H ₈	-2200
butene	C ₄ H ₈	-2716

)

Which fuel produces the most energy when 1g of the fuel is completely burned?

- A ethanol
- B butene
- C methane
- **D** propane
- 24 The scheme shows four stages I to IV in the process involving the production, storage and usage of hydrogen as a fuel.


$$2H_{2}O(I) \xrightarrow{I} 2H_{2}(g) + O_{2}(g) \xrightarrow{II} 2H_{2}(I) + O_{2}(I) \xrightarrow{III} 2H_{2}O(g)$$

Which stages are endothermic?

- A land l
- B I and IV
- C II and III
- D III and IV

NAME:	_() CLASS:	

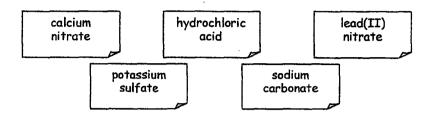
25 Two experiments were carried out to determine the rate of reaction between copper(II) carbonate and nitric acid. The rate of reaction was followed by measuring the volume of carbon dioxide produced at regular time intervals. Curve Pdisplays the result obtained by reacting excess copper(II) carbonate with nitric acid.

Whatchange to one of the conditions will produce the results curve Qdisplays?

- A A catalyst was used.
- B The concentration of nitric acid used is increased.
- C The mass of copper(II) carbonate used is increased.
- **D** The volume of nitric acid used is increased.

26 24 dm³ of nitrogen is reacted with 36 dm³ of hydrogen to produce ammonia.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$


Which change would result in an increase in both the speed of reaction and percentage yield of ammonia?

- A adding a suitable catalyst
- B increasing the pressure
- C increasing the temperature
- D use twice the volume of nitrogen and hydrogen

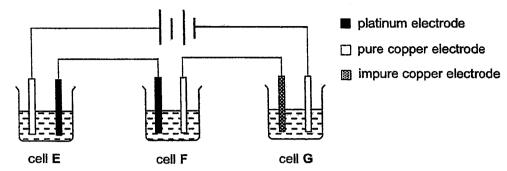
NAME:	()	CLASS:
-------	---	---	--------

Refer to the information below for questions 27 and 28.

The labels of fivecolourless solutions below were missing from their containers and a qualitative analysis was conducted in an attempt to identify the five solutions.

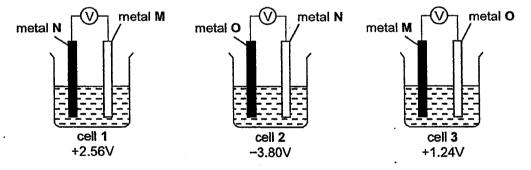
Equal volumes of two solutions were mixed with one another each time and the observations are recorded in the table.

Solutions	1	2	3	4	5
1	-	no visible	white	white	white
		reaction	precipitate	precipitate	precipitate
	ļ		formed·	formed	formed
2	no visible	•	no visible	white	white
	reaction		reaction	precipitate	precipitate
				formed	formed
3	white	no visible	-	no visible	effervescence
	precipitate	reaction		reaction	observed
	formed				,
4	white	white	no visible	-	no visible
	precipitate	precipitate	reaction		reaction
	formed	formed			
5	white	white	effervescence	no visible	-
	precipitate	precipitate	observed	reaction	
	formed	formed			


27 What is solution 1?

- A calcium nitrate
- B hydrochloric acid
- C lead(II) nitrate
- D potassium sulfate

28 What is solution 2?


- A calcium nitrate
- B hydrochloric acid
- C lead(II) nitrate
- D potassium sulfate

In the circuit below, an electric current is passed through three cells all with aqueous copper(II) sulfate as the electrolyte.

In which cell(s) will a change in the colour intensity of the electrolyte be observed?

- A cell F
- B cellsE and G
- C cells F and G
- D cells E, F and G
- The diagram shows three different electrochemical cells, each containing two of the three metals, M, N and O,immersed in sodium nitrate solution. The voltage of each electrochemical cell is shown below each cell. The direction of electron flow in cell 1 is from right to left.

What is the ascending order of reactivity of the metals?

- A M, N, O
- B N. M. O
- C O, M, N
- D O, N, M

A student carried out an electrolysis experiment using a battery, two electrodes and an electrolyte.

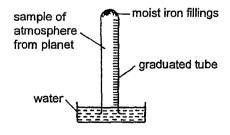
As the reaction proceeded, she recorded her observations and wrote down these two half-cell equations to represent the reactions that occurred.

$$X^{2+}(aq) + 2e^- \rightarrow X(s)$$

 $2Y^-(aq) \rightarrow Y_2(g) + 2e^-$

Which set of observations corresponds with the two half-cell equations she wrote?

	half-cell equation	electrode	mass of electrode after 15 min
Α	$X^{2+}(aq) + 2e^- \rightarrow X(s)$	anode	decreases
В	$X^{2+}(aq) + 2e^- \rightarrow X(s)$	cathode	increases
С	$2Y^{-}(aq) \rightarrow Y_2(g) + 2e^{-}$	anode	increases
D	$2Y^{-}(aq) \rightarrow Y_2(g) + 2e^{-}$	cathode	decreases


32 A catalytic converter is used to convert pollutants into less harmful products in a car exhaust system.

Which change does not occur in a catalytic converter?

- A carbon dioxide → carbon
- B carbon monoxide → carbon dioxide
- **C** oxides of nitrogen → nitrogen
- D unburnt hydrocarbons → carbon dioxide and water
- 33 The atmosphere of a newly discovered planet contains the following gases.

carbon dioxide	20%
nitrogen	40%
noble gases	10%
oxygen	30%

The diagram shows the apparatus that was set up with a 100 cm³ sample of the atmosphere of the planet in the graduated tube. The volume of the sample was measured at intervals until no further change in volume took place.

What volume of the sample would remain?

- **A** 10 cm³
- **B** 30 cm³
- C 40 cm³
- **D** 70 cm³

34 In what way do CFCs, methane and carbon dioxide affect the environment?

	CFCs	methane	carbon dioxide
Α	depletion of ozone layer	global warming	greenhouse gas
В	depletion of ozone layer	greenhouse gas	acid rain
С	global warming	acid rain	depletion of ozone layer
D	global warming	greenhouse gas	acid rain

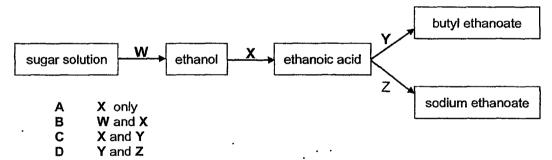
Thermal depolymerisation is a method of recycling waste polymers. Under high temperature and pressure, long chain polymers decompose to form a mixture of short chain petroleum hydrocarbons with a maximum chain length of around 18 carbon atoms. The mixture of hydrocarbons can be separated in a separating column as shown.

Which fraction consists of hydrocarbons with around 18 carbon atoms?

36 Glycerin, is commonly used in moisturizing skincare products to attract water from the environment to the skin.

The structure of glycerin is shown.

Which is not an isomer of glycerin?


37 A hydrocarbon reacts with fluorine in the reaction shown.

$$C_xH_6 + 2F_2 \rightarrow C_xH_4F_2 + 2HF$$

Which statement is correct?

- A It is an addition reaction.
- B The hydrocarbon is unsaturated.
- C The molecular formula of the hydrocarbon is C₃H₆.
- D Ultraviolet light is required for the reaction to take place.
- 38 Which statement about the compound shown below, is incorrect?

- A It decolourises aqueous bromine.
- B It decolourises acidified potassium manganate.
- C It forms an amide linkage when reacted with itself.
- D It reacts with magnesium to produce hydrogen gas.
- Which reaction(s), W, X, Y and/orZ involve(s) oxidation?

40 The repeating units of two polymers, P and Q are shown.

What are P and Q?

	P	Q
Α	fats	starch
В	nylon	protein
С	starch	fats
D	terylene	nylon

END OF PAPER

NAME:	(
	•

CLASS	
CLA33	

DATA SHEET
The Periodic Table of the Elements

	- 1									-						Г						
	0	2 He 4	Ne Ne 10 Me	18 Argan	3 ;	Ž .	38	ξ ,	e ,	Ze Xenon		2	86				8	2	7.1		נ	Lawrencium 103
	5		19 ************************************	Chlorine 17	8	ŭ į	32	t27 •	-	fodine 53		¥	Asiaine 85				5	چ	Ytlarbum 70		Ş	Nobole 102
	>		* O & & & &	Sulfur 16	92	Se	z	128	9	Barrium 62	1	Po	Potentum 84				\$	Ē	Thukum 69		Md.	Mendelevium 103
	^		₹ Secondary 2 CT	Phosphorus 15	7.5	As	2	월 ;	တ္တ	Antimony 51	80,	<u></u>	Blamuth 83				167	ш	Erblum 68		Fm	Fermum 100
	Δ		2 O ∰ 8 ™	Silicon 14	23	Germanum	32	119	Sn	50 Tr	202	2	Lead 82				592	운	Holmium 67			Ensteinum
	==		≈ 8 8 a s	Aluminaum 13	22	Ga Seem	31	115	드	Indom 49	204	7	Thatam 81				5	Š	Dysproeium 68		ర	
					33	5	30	112	ප	Cadmium 48	201	Ę	Mertury 80				32	Τp	Torbum 66		ă	
				:	45		. 82	108	Ag	Bher 47	197	Ā	70 Gold				157	g	Gadolinium 64		Ę	
Group					59	Z	28	106	<u>R</u>	Pathedum 46	195	<u>a</u>	Patinum 78				152	显	Europium 63		Αш	Amendum
õ			1		85	ပိ 🖁	22	103	듄	Rhodium 45	192	Ä	Historia 77				150	Sm	Samerium 62		2	Pulonum
		H Hydrogen				₽ 5	2	101	2	Ruthenium 44	190	ဝိ	Osmium 76					F	Promethium 61		å	Neptanium
					95		52		မ	um Technettun 43	\$	8	- £				ž	P	Neodymium 60	888	>	Charles
			•		į	ပြုံ	24	8	œ W	Mohbdenum 42	흋	≥	Tungsten				17	à	Preseodymium 59		g.	Protectivism
					20	> %	23	8	£	Michigan 4.1	181	₽.	Tampadam 73				140	ပီ	Centum	232	£	Thorium
					1		22		ž	Zirconium 40	l	Ĭ	Hafnium 72				_			nic mass	28	ic) number
					\$	Sc	24	æ	>	39 Yithium	55	2	Lambanum 57	227	Ą	Activium 89	00,00	מבו עמ	enes	a e refative alomic mass	X = atomic symbol	b = proton (atomic) number
	=		Been Been Action 1	Megnetium 12	ę	s i		ł	જ	Strontium 3.8	137	Ba	_	525	麔	Radium 68	PEO 74 Landhonold notion	annanor.	90-103 Actinoid senes	[×	
	-		S 23 Z3	11 Soderm	æ	×	10	28	욦	_	133	క	Cassum 55		ŭ	Francium 87	*E0 74	30.7 I L	190-103	L_	Key	

)

The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.).

· · · · · · · · · · · · · · · · · · ·	Name:	() Class:	
---------------------------------------	-------	------------	--

PRELIMINARY EXAMINATION 2016 SECONDARY 4 EXPRESS

CHEMISTRY

5073 / 02

Paper 2

Date: 19 August 2016

Duration: 1h 45 min

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions in the space provided.

Sections B

Answer all three questions, the last question is in the form either /or.

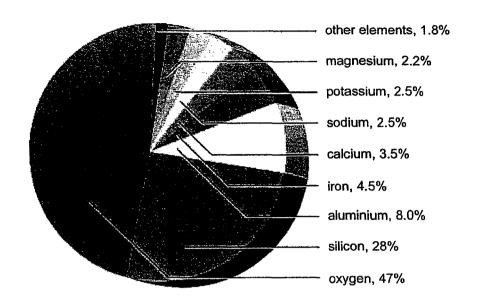
At the end of the examination, fasten all your work securely together.

The number of marks is given in bracket [] at the end of each question or part question.

The total number of marks for this paper is 80.

A copy of the Periodic Table is printed on page 20.

Parent's/Guardian's Signature:


For Examiner's Use						
Section A	/ 50					
Section B						
B7	/ 10					
B8	/ 10					
B9	/ 10					
Total	/ 80					

Name:	() Class:
Manie.	1	J Olass

Answer all questions in this section in the spaces provided.

The total marks for this section is 50.

A1 The diagram shows the percentages of some elements found in the earth's crust.

abundant	elements found in the earth's crust.	
	[1]
(b)	Which element forms an oxide that reacts with both acids and bases?	
	[1]
(c)	Which element forms coloured compounds?	
	· [1]

State the chemical formula of the compound formed by the two most

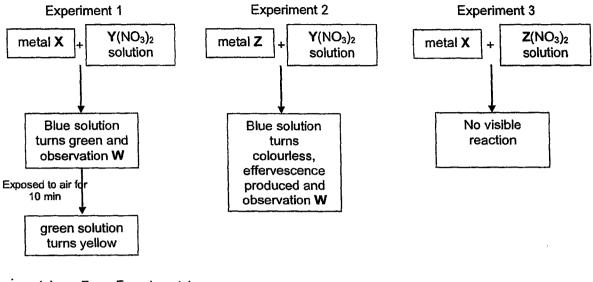
(d)	Which element can only be extracted by electrolysis?
	[1]
(e)	Suggest why oxygen can be found in the earth's crust.
	[41

(a)

Name:	_()	Class:
-------	------	--------

A2 The table shows the concentration of different ions found in a sample of aqueous industrial waste from a chemical plant.

ion	concentration in mol/dm ³
H⁺	3.30
K ⁺	0.42
Na [†]	0.17
NO ₃ -	1.55
1 0	0.32
Zn ²⁺	0.23


(a)		would be observed when the aqueous industrial waste is tested with sal indicator? Explain your answer.
		[2]
(b)		equeous industrial waste is treated with aqueous ammonia before it is sed into the sea.
	(i)	Upon reaction with aqueous ammonia, some metal ions can be removed from the industrial waste.
		Name the chemical method involved in this process.
		[1]
	(ii)	The volume of aqueous ammonia added must be carefully calculated before adding to the sample.
٠		Suggest why adding an excess volume of aqueous ammonia will be ineffective in removing Zn ²⁺ ions.
•		· · · · · · · · · · · · · · · · · · ·
		[2]
	(iii)	Identify two cations that cannot be removed by this method and state reason for it.
		[2]

Name	·	· () Class:
	(c)	Another bottled sample is obtained from the chemical plant as shown.
		This aqueous sample contains Pb ²⁺ and Al ³⁺ ions
		Describe how the highly toxic Pb ²⁺ ions can be removed from the sample. Include a suitable reagent in your description.
		[2]
А3	The to	able shows how elements in Group II of the Periodic Table react with cold
		element reaction with cold water magnesium reacts slowly with cold water calcium reacts readily with cold water strontium reacts vigorously with cold water barium reacts very vigorously with cold water radium reacts very vigorously with cold water
	(a)	Write the chemical formula of the products formed when magnesium reacts with cold water.
		[2]
	(b)	Radium is the last member in Group II.
		(i) Predict how radium reacts with cold water.
		[1]
		(ii) Suggest how radium should be stored.
		[1]
	(c)	Describe the relationship between the reactivity and atomic size of the Group II elements. Suggest an explanation for the relationship.

Name:		() Class:
(d)	Wher	strontium is heated in chlorine gas, they react to form a compound.
	(i)	Draw the electronic structure of the compound formed between strontium and chlorine. Show only the valence electrons.
		[2]
	(ii)	Using ideas about bonding and structure, predict the physical state of the compound formed and explain why it is in that state.

Name:	()	Class:	
	1	,	Oldoo.	

A4 Three experiments were carried out in order to determine the order of reactivity of three metals, X, Y and Z.

· (a) From Experiment 1,

(iii)

(i) Identify metal

	[1]
(ii)	State observation W.

[1]

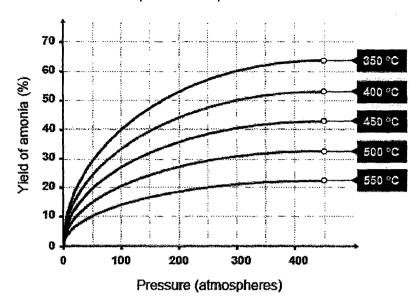
Write an ionic equation f	or the reactionbetween metal Xand $Y(NO_3)_2$.
	[1]

(b)	Describe an experiment to test for the gas produced in Experiment 2.	
	·	•

[1
Arrange metals X Yand 7 in order of descending reactivity

Anang	go motais z	A, I and Z	ii olael ol	descending i	cachivity.		
						•	
			••••••	• • • • • • • • • • • • • • • • • • • •			[1].

(c)


Name:			()	Class:			
A5 Vanad	dium is	a transition metal.						
(a)	(a) The vanadium(III) ion can behave as an oxidising or reducing agent. The reaction of vanadium(III) ions with iron(III) ions is a redox reaction. V³+ Fe³+→ V⁴+ Fe²+ Explain in terms of electron transfer whether the vanadium(III) ion is acting an oxidising or reducing agent in this reaction.							
	••••••							
			••••••••	********				
		• • • • • • • • • • • • • • • • • • • •		•••••	[2]			
(b)	Vanad cyanid		polyatomic cya	nide ion,	CN ⁻ , to form vanadium			
	A con	npound of vanadium cy	anide has the f	ollowing o	composition:			
		element	percentage	by mass				
		vanadium	28%	6				
		carbon	33%	6				
		nitrogen	39%	6				
		·						
					[2]			
	(ii)	State the oxidation s	tate of vanadiur	n in the c	ompound.			
			••••••		[1]			
(c) extracted	Iron i	is another transition in the blast furnace f			nmonly used. It can be reduction.			
pure	(i)	Write the chemical iron can be obtained			e symbols, to show how			
			· · · · · · · · · · · · · · · · · · ·		[2]			
	(ii)	Limestone is added how limestone is abl		nace to re	emove impurities. Explain			
			••••••	•••••				

•						
Name:			· · · · · · · · · · · · · · · · · · ·	_()	Class:
	Ammonia i reactants.	is manufactured	d in the Haber Pro	cess v	vith hyd	drogen and nitrogen gases
,	A schemat	ic diagram of th	e Haber Process is	show	n.	·
	boiling		nitrogen gas poiling point: -195.8 °C unreacted hyd and nitrogen g			compressor
rea	actor	Finely powdered catalyst		→		unreacted hydrogen and nitrogen gas process T
						boiling point: -33.4 ºC
	(a) Sta	ate a source of I	hydrogen gas.			
			••••••	•••••		[1]
	(b) Ex	plain why it is in	nportant that no air	is allo	wed in	to the reactor.
			••••••	•••••	••••••	
•	•••		••••••••••			[1]
ammor	I -	nme process T from the m		y this	proce	ss can be used to obtain

The catalyst used in the reactor is iron. Suggest why finely powdered iron is used instead of a strip of iron.

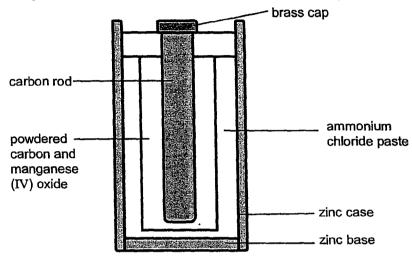
(d)

(e) The graph shows the percentage yield of ammonia in the equilibrium mixture under different temperature and pressure conditions.

(i) From the graph, state the conditions required to produce the greatest percentage yield of ammonia.

(ii) Suggest two reasons why the conditions stated in part (e)(i) are not used commercially.

 	· · · · · · · · · · · · · · · · · · ·	 	• • • • • • • • • • • • • • • • • • • •
	·		
 • •		 •	• • • • • • • • • • • • • • • • • • • •
 		 	[2


Name:	()	Class:
-	 •	•	

Section B [30 marks]

Answerall three questions in this section in the spaces provided.

The last question is in the form of either/or and only one of the alternatives should be attempted.

B7 The diagram shows the cross-section of a zinc-carbon battery.

The equation represents the overall reaction in a battery.

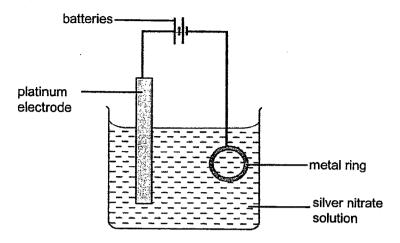
(a) State the electrolyte present in the battery

$$Zn(s) + 2MnO_2(s) + 2NH_4Cl(aq) \rightarrow Mn_2O_3(s) + Zn(NH_3)_2Cl_2(aq) + H_2O(l)$$

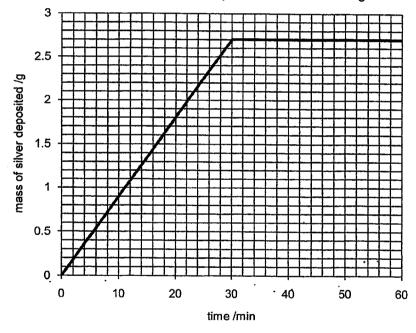
Ammonia gas and hydrogen gas are produced at the carbon electrode. Hydrogen gas reacts with manganese (IV)oxide, MnO_2 , to give water, while ammonia gas reacts with zinc chloride, $ZnCl_2$, to give $Zn(NH_3)_2Cl_2$.

(a)	State the electrolyte present in the battery.	

(p)	Write the i	onic half-equations for the reactions occurring at the electrodes.	
	Cathode:		
	Anada:	[7]	1


[1]

(c)	After prolonged usage, explain why leaking of ammonium chloride paste will occur.


[1]

(d) Two zinc-carbon batteries are used in the set up below for electroplating a metal ring with a thin layer of silver. 500 cm³ of 0.05 mol/dm³ of silver nitrate solution was used

as the electrolyte.

The graph shows the mass of silver deposited on the metal ring over time.

(i) Gas ${\bf X}$ was produced at the platinum electrode during the process of electroplating. Identify gas ${\bf X}$.

.....[1]

(ii) Explain the shape of the graph after 30 minutes of electroplating.

.....

(iii) Calculate the concentration of silver nitrate solution, in mol/ dm³, at the 10th minute of electroplating. (assume change in volume of solvent to be negligible)

Name:	()	Class:
-------	---	---	--------

[3]

(iv) Calculate the mass of zinc consumed from the battery, in g, at the 10th minute of electroplating.

[2]

Name:	() Class:	
	 ` '	,	

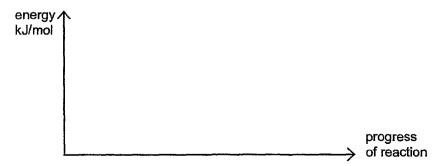
B8 A growing concern for the environment has promoted a shift towards the use of cleaner sources of energy such as hydrogen fuel. Currently, the dominant technology for the production of hydrogen is through steam reforming of hydrocarbons.

Steam-methane reforming is a method used for producing hydrogen from natural gas. In the process, methane reacts with steam to produce carbon monoxide and hydrogen.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

The carbon monoxide produced can be further reacted with steam to produce more hydrogen in the water-gas shift reaction.

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$


(a) The bond energies of various bonds are shown in the table.

bond	bond energy (kJ/mol)
C=O	805
CH	415
C≣O in CO	1080
O – H	464
H–H	436

Calculate the enthalpy change of the steam-methane reforming reaction.

[2]

(b) Sketch the energy profile diagram of the steam-methane reforming reaction.

[2]

Name: _	() Class:
(c)	What is the maximum mass of hydrogen that can be produced from 1 kg of methane?
	[3]
(d)	Write the chemical equation for the steam-propane reforming reaction.
	[1]
(e)	An advantage of using hydrogen as a fuel is that it does not cause pollution as water is the only product formed when hydrogen is combusted.
	However, an environmentalist commented that using hydrogen as a fuel contributes to carbon dioxide emissions as well. Explain why.
	[1]

Name:()	Class:
----------	--------

EITHER

B9 The table shows some information about the homologous series of organic compounds called aldehydes.

name	condensed formula	full structural formula
ethanal	CH₃CHO	0 T H-C-H
	C₂H₅CHO	H-C-C, H - C, H - C,
butanal		

- (a) (i) Complete the table to show the name, condensed formula and structural formula of the aldehyes. [2]
 - (ii) Explain how you can tell that these molecules are from the same homologous series.

•••••	 	•••••	[1]

(iii) Predict the condensed formula of the aldehyde containing 18 carbons.

(b) When an alcohol reacts with excess acidified potassium dichromate (VI), a carboxylic acid is formed. When excess alcohol is used instead, an aldehyde is formed as shown in the equation.

$$C_2H_5OH + [O] \rightarrow CH_3CHO +$$

(i) Name the by-product formed in the reaction.

(ii) Explain, in terms of oxidation state, whetherethanol is oxidised or reduced to form ethanal.

 •••••

-[2]
- (c) Aldehydes can undergo addition reaction in which a molecule of hydrogen cyanide is added to form a cyanohydrin.

Name:	· _			() Class: _	
	O II R-C-H	+	HCN	→	OH ! R-C-H ! CN	

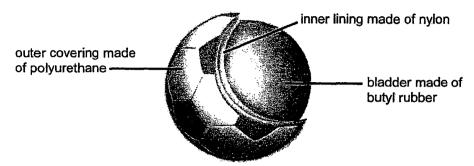
hydrogen

cyanide

aldehyde

(i) Draw the dot-and-cross diagram to represent a molecule of hydrogen cyanide. Show only valence electrons.

cyanohydrin


(ii) Draw the full structural formula of the compound formed when ethanal reacts with hydrogen cyanide

Name:(_() Class:	
--------	-------------	--

OR

B9 A soccer ball is typically made up of three parts: the outer covering, the inner lining and the bladder, which contains air.

Various polymers are used in the production of soccer balls. The diagram shows the different polymers which are used to form the different layers of a soccer ball.

(a) Nylon is a condensation polymer. One type of nylon is nylon-6,6. This is the repeating unit of nylon-6,6.

(i)	What is meant by the term condensation polymer?			
	[1]			

(ii) Draw the structures of the two monomers that react to form nylon-6,6.

		[2]
(iii)	Name the linkage present in nylon-6,6.	
		[1

Name:	_()	Class:
-------	----	---	--------

(b) Butyl rubber is a synthetic polymer which is produced by addition polymerisation of isobutylene. A section of the polymer is shown.

(i) Draw the full structural formula of a molecule of isobutylene.

(ii) Describe a test that can be used to differentiate isobutylene and butane.

(c) Polyurethanes are a group of compounds which contains the urethane linkage. The diagram shows the structure of the urethane linkage.

A urethane linkage is formed when a hydroxyl (alcohol) function group reacts with an isocyanate functional group shown in the diagram below.

A type of polyurethane is formed by reacting these two monomers together in a ratio of 1:1.

(i) Draw a repeat unit of the polyurethane formed.

[1]

Name: _	 -	() Class:
	(ii)	A sample of the polyurethane was analysed and found to have an average relative molecular mass of 11 200.
		How many carbon atoms are present in an average chain?

[2]

- END OF PAPER-

lame:	_() Class:	
-------	----	----------	--

DATA SHEET The Periodic Table of the Elements	
---	--

	> >			72	0 z	Naragen 7	28 31	:S	- 3	75	Ge As	Germantum Artenic Salontum 32 34	118	Sr Sp	50	20 20 20 20 20 20 20 20 20 20 20 20 20 2	3 5	62			167	Ho Er Tm	8	Es Fm Md	Einsteinum Fermius
	=			=	m	20	23	Α	Aŭminium 13	1		Zino Gullium 31	112 115	uI j		201	The three markets	150			60	Th Dy	8	Bk Cf	rketum Calfornium
										25	ö	Copper 2ino	505	Ag	47	197	3	62			-	Goden	2	Ş	Curlem
Group										65	; Z	March 28	90		dum Pathoum	192 195		- 1			- 1	Sm Eu	2	Pu Am	artum Ameridum
		-	Hydrogen		,					1		Iron Cobart	101	Ru Rh	Puthanium Phodum	ł	SO	77 27				PE		2	and the same of th
											2 5	Mangandre		ည	Tectorelium 43	98	8	75				ž	60	238)
											ے د		\$ S	ž	Molytetera 42	₫	`	n Tungston		•	. }	Ξ &	59	å	4
										-		3	- 1			191		lun Tantakun 73				÷ O	3 8		= }
											45		8	5 Z		139		Lantharum Hafrilum 57 a 72	227	Ac	89 1	1 series		a relative atomic mass	X = stomic symbol
	-	=			•	Be	*	*	Mg	12	\$	5 }		ž &	Secution	137	Ba	Barlum 56	226	S.	Be Redum	*58-71 Lanthanoid series		Г	×
		-			~	5	3	23	8	- 1	8		- 1	នដ	Rubidium	133	ర	Caesslum 55		ŭ	Francium 87	*58-71 L	2		Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

2016 Chem Prelims P1

1	2	3	4	5	6	7	8	9	10
В	С	С	D	Α	В	С	D	С	D
11	12	13	14	15	16	17	18	19	20
D	Α	С	С	D	D	D	А	С	С
21	22	23	24	25	26	27	28	29	30
В	D	С	В	В	В	С	А	А	В
31	32	33	34	35	36	37	38	39	40
В	Α	D	Α	D	D	D	С	Α	D

Sec 4 Pure Chem Prelim 2016 Paper 2 mark scheme

Section A

Qn	Answer	М
A1a	SiO ₂	1
A1b	Aluminium	1
A1c	Iron	1
A1d	Potassium/sodium/calcium/aluminium/magnesium	1
A1e	Oxygen is found in the earth's crust as it reacts with <u>reactive metals</u> to form solid compounds.	1
	[answers that refer to oxygen in the form of a gas are not accepted]	<u> </u>
A2a	The colour of the solution changes from green to red/orange.	1
	There is a high concentration of H [±] ions in the sample which makes the solution acidic.	1
A2bi	Precipitation/ filtration	11
A2bii	When aqueous ammonia is added to Zn ²⁺ ions, a white precipitate is formed and can be	11
	removed by filtering.	
	However, if excess aqueous ammonia is added, the white precipitate will dissolve to form a	1
	colourless solution and cannot be removed.	1.
	["Zn²+ ions are soluble in xs ammonia" were penalized as it is the precipitate that was	1
	soluble.]	l
A2biii	Potassium ions (K [±]) and sodium ions (Na [±]) cannot be removed	1
~~DIII	As they form soluble hydroxides when reacted with aqueous ammonia.	1
A2c	Add aqueous potassium iodide/chloride/sulfate (any other possible reagents).	+
AZC	Add <u>aqueous potassium lodide/chloride/sulfate</u> (any other possible reagents). Pb ²⁺ ions will react with aqueous potassium chloride to <u>form insoluble/solid</u> lead(II) chloride	1
		1
	while can be filtered away.	1
	["Aqueous chlorine" and "chlorine" was not accepted as there are no ions in it.]	-
		-
A3a	Mg(OH) ₂ / MgOand H ₂	2
	[No marks if equation was written instead.]	1_
A3bi	Violently / Explosively	1
	["Very explosively" is not accepted as this is a Group II metal.]	
A3bii	Radium should be stored in oil/vacuum.	1
	["inert environment" is not accepted unless candidates provide an example of what is meant	
	by it.	
A3c	The larger the atomic size, the more reactive the element. (1)	1
	The larger the atom, the further the valence electrons from the nucleus.	1
	It is easier to lose the valence electrons (2)	1
	as the attraction between negative electron and positive nucleus is weaker./ electrostatic	1
	forces of attraction is weaker.(3)	1
A3di		2
, 10 -	24	-
		-
		-
	x (sr) x 2 x (e) x	
	41	- [
	Symbol X: electron of Sr	
	electron of CI	1
	[candidates should either draw 2 chloride ions or ensure that the indication of the '2' cannot	
	be ambiguous]	
A3dii	Strontium chloride has a giant ionic lattice structure(2)	1
	With strong electrostatic forces of attraction between ions that require a large amount of	1
	energy to overcome, (3)	
	hence it is in the solid state. (1)	.
	Hence it is in the some state. (1)	
A4ai	Iron	- 1
	[note that iron metal should not have "(II)". Only ions or compounds will have it to show what	

	is the oxidation state of iron, i.e. iron(II) ions or iron(II) oxide]						
A4aii	Pink / brown / reddis	h-brown / pinkish-	brown solid formed	/ metal decreases i	n size	1	
A4iii	$Fe(s) + Cu^{2+}(aq) \rightarrow F$	⁻ e ²⁺ (aq) + Cu(s) /				1	
	$M(s) + N^{2+}(aq) \rightarrow M^2$	⁽⁺ (aq) + N(s)					
	[State symbols are c	ompulsory for all i	onic equations]			1	
A4b	Insert burning splint					1	
	If burning splint extir	nguishes with "po	p" sound, hydroger	n gas is present.]]	
A4c	Z, X, Y					1	
A5a	V ³⁺ acts as the reduc	cing agent as caus	es			1	
	Fe3+ to be reduced a	is <u>Fe³⁺ gains an el</u>	ectron to form Fe ²⁺ .	<u>.</u>		1	
	[Answers that descri		sed to form V4+ are	not accepted as it d	oes not show	1 1	
	how V ³⁺ acts as a rec	ducing agent]				<u> </u>	
A5bi							
		V	С	N		1	
	%	28	33	39			
	No. of mol	28/51 =0.549	33/12 =2.75	39/14= 2.78		1	
	Ratio	0.549/0.549 =1	2.75/0.549 =5	2.78/0.549= 5			
					-		
	Empirical formula of	compound is V(C)	<u>N)</u> <u>5</u> .			1	
	["VC ₅ N ₅ " is not acce	pted as the formu	la of polyatomic ion	, CN is given.]			
A5bii	Oxidation state of va					1	
A5ci	Fe_2O_3 (s) + 3CO (g)					2	
	2Fe ₂ O ₃ (s) + 3C (s)						
	[1m for correct balan				first mark)]		
A5cii	Limestone decompo					1	
	The basic calcium ox	<u>xide</u> reacts with th	e <u>acidic silicon diox</u>	ide to form calcium	<u>silicate / slaq</u>	1	
	which is removed.				_		
	[Award only 1m if car	ndidate provides t	oth correct equation	ns but not explanati	on.		
A 0 -						 _ 	
A6a	From the cracking of					1	
A6b	Air contains oxygen		<u>vitn nitrogen or nydi</u>	rogen gas to form ox	kides of nitrogen	1	
AC-	or water in the hot re					$\frac{1}{4}$	
A6c	Condensation can be As ammonia has a h		than budragen and	l mituamam /		1 1	
	As ammonia is able				an are ages	'	
	(*use a reasonable to		ald at - 100 C willie	nydrogen and milio	yen are yases.		
	[Fractional distillation		es the substances a	re all in the naseous	s state 1		
A6d	Powdered iron is use			ire dir irr die gabeou.	3 3.0.0.1	1	
7100	The larger the total e			nefrequency of effec	tive collisions	1	
	increase(2) and	<u> </u>	<u></u>	io <u>iroquorioy or orroc</u>	are come.coc	'	
	rate of reaction incre	ases. (3)				1	
A6ei	450atm, 350°C	<u></u>	·····				
A6eii	The process is too d	angerous/ costly a	at 450atm			1	
	and too slow at 350°	<u>C</u>			•	1	
	and too slow at 350° [No marks are award	ded if candidates j	ust state the ideal c	onditions or state fa	cts like "at lower	1	
		ded if candidates j	ust state the ideal c low, the rate is too	conditions or state fa slow" without refere	cts like "at lower encing the	1	
	and too slow at 350° [No marks are award	ded if candidates j	ust state the ideal c low, the rate is too	onditions or state fa slow" without refere	cts like "at lower encing the	1	

Section B

Qn	Answer	M
B7a	ammonium chloride/ NH ₄ Cl	1
B7b	cathode: $2NH_4^+$ (aq) + $2e^- \rightarrow 2NH_3$ (g) + H_2 (g) anode: Zn (s) $\rightarrow Zn^{2+}$ (aq) + $2e^-$	1 1
В7с	zinc case/base is the anode which is reacted during the reaction. Hence, the thickness of the zinc case/base reduces, resulting in the leaking of the paste.	1
B7di	Oxygen	1
B7dii	silver is no longer deposited on the ring as \ INCORRECT ANSWERS:	1

	f silver ions falls below the All silver io	ns are deposited
all the silver ions		ns are displaced
		er has reacted
		si ilas reacteu
	sited at the 10 th minute = 0.9 g	
	er deposited = 0.9/108 = 0.0083333 mol	[1]
	er ions in the solution initially = $0.05 \times 0.5 = 0.025$ mg	ol
	er ions in the solution at the 10 th minute	11
= 0.025 - 0.00833	= 0.016667 mol	}
concentration of sil	ver ions = 0.016667 /0.5 = 0.0333 mol/dm³	1
B7di 2Ag ⁺ → 2Ag + 2e ⁻		
V $Zn \rightarrow Zn^{2+} + 2e^{-}$		
		1 1
no of moles of silv	er deposited = 0.0083333 mol	
	c reacted = 0.0083333/2 = 0.0041667	11
1		1 1
	ed = 0.0041667 x 65 = 0.271g	1
B8a enthalpy change	1000 0 100	
= 4x415 + 2x464 -		1
= +200kJ (must sh	ow positive sign)	1
B8b energy ∧		2
energy/] [
kJ		
123	CO (g) + 3H ₂ (g)	
	activation	
	Chorgy	
CH₄(g)+H₂(0(9)	
	progress	
<u> </u>	of reaction	ın III
1 mark for shape of	f graph & labelling of reactants and products	
	η of activation energy and ΔH (with one-sided arrow)	
	thane = 1000/16 = 62.5	
	drogen produced from SMR = 62.5 x 3 = 187.5 mol	[1]
	drogen produced from WGSR = 62.5 mol	1
	of hydrogen produced = 187.5 + 62.5 = 250 mol	
	produced = 250 x 2 = 500g	
B8d $C_3H_8 + 3H_2O \rightarrow 3$		1
	$_2O(g) \rightarrow 3CO(g) + 7H_2(g)$	
	produced in the process of producing hydrogen during	
B8e carbon dioxide is p		g the water-gas shift 1
		g the water-gas shift 1
B8e carbon dioxide is p		g the water-gas shift 1
B8e carbon dioxide is preaction. EITHER		
B8e carbon dioxide is preaction. EITHER B9ai propanal		g the water-gas shift 1
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO		
B8e carbon dioxide is preaction. EITHER B9ai propanal		
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO H H H O H-C-C-C-C		
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO H H H O H-C-C-C-C H H H H		
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO H H H O H-C-C-C-C H H H H 3 correct - 2 mark		
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO H H H O H-C-C-C-C H H H H 3 correct – 2 mark 2 correct – 1 mark		
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO H H H O H-C-C-C-C H H H H 3 correct - 2 mark 2 correct - 1 mark B9aii They have the sai	me <u>function group</u> "CHO"	
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO H H H O H-C-C-C-C H H H H 3 correct - 2 mark 2 correct - 1 mark B9aii They have the sai		
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO H H H O H-C-C-C-C H H H H 3 correct - 2 mark 2 correct - 1 mark B9aii They have the sai	me <u>function group</u> "CHO"	2
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO H H H O H H H H 3 correct - 2 mark 2 correct - 1 mark B9aii They have the sar They have the sar They have the sar	me <u>function group</u> "CHO"	1
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO H H H H 3 correct - 2 mark 2 correct - 1 mark B9aii They have the sar They have the sar They have the sar B9aiii C ₁₇ H ₃₅ CHO B9bi water	me <u>function group"CHO"</u> me <u>general molecular formulaC_nH_{2n+1}CHO</u>	1 1 1
B8e carbon dioxide is preaction. EITHER B9ai propanal C ₃ H ₇ CHO H H H O H-C-C-C-C H H H H 3 correct - 2 mark 2 correct - 1 mark B9aii They have the sar They have the sar B9aiii C ₁₇ H ₃₅ CHO B9bi water B9bii ethanol is oxidise	me <u>function group"CHO"</u> me <u>general molecular formulaC_nH_{2n+1}CHO</u>	1 1 1 1 1

B9ci	languard	2
	lengend	
	• – electron of nitrogen	
	○ C · N · - electron of hydrogen	
	X electron of carbon	1 1
	x — electron of carbon	
	×	
	•	
	1 mark for diagram	
	1 mark for key (no marks if diagram is wrong)	
B9cii	н 0–Н	1
	Т I H-C-C—H	
	i	
	H C≡N	
OR		+-1
B9ai	condensation polymer are large molecules formed when monomers combine with the	1
	removal of a small molecule.	
B9aii	н н н н н	11
	4 4 4 4 4 4 4	
}	оннно	11
	O H H H H O 	
•		1 1
B9aiii	amide linkage	11
B9bi	Н	1
	HH-C-H	
	с == с н н-с-н	
	н н-с-н	
	H	
-		
B9bii	add aqueous bromine to a sample of isobutylene and butane separately.	11
	if aqueous bromine decolourises/turn from reddish-brown to colourless, the sample is isobutylene. if aqueous bromine remainsreddish-brown, the sample is butane.	1
B9ci		1
	O	
	-U-N-U ₆ H ₆ -N-U-U-U-U-U-	
B9cii	no. of diol/diisocyanate molecules which reacted = 11200/ (62+162) = 50	1
L	no. of carbon atoms in an average chain = 50x (2+8) = 500	11