	11.5
	88
	8.8
	0 11
	ARK B 18
	288
	68 7/ B
	JB701 B
4	mark of the
-	word &
-4	monach.

JUNYUAN SECONDARY MID YEAR EXAMINATIO SECONDARY FOUR EXPE	
CANDIDATE NAME	
CLASS	INDEX NUMBER
MATHEMATICS	4048/01
Paper 1	3 May 2017
	2 hours
Candidates answer on the Question Paper.	
READ THESE INSTRUCTIONS FIRST	
Write your name, class and index number on Write in dark blue or black pen. You may use an HB pencil for any diagrams of the control of the c	or graphs.
answer to three significant figures. Give answ	ss of marks. s expected, where appropriate. ne question, and if the answer is not exact, give the
At the end of the examination, fasten all your The number of marks is given in brackets [] The total of the marks for this paper is 80.	work securely together. at the end of each question or part question.
	For Eveninar's Hoo
	For Examiner's Use
	i i

This document consists of 16 printed pages (including the Cover Sheet).

[Turn over

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Given that a:b=5:4, calculate the value of $\frac{2a}{7b}$.

1	(a)	Express 126 as the product of its prime factors.		
	(b)	Using your calculator, find the value of $\pi^{3.14}$ co		vo decimal places.
			Answer	[1]
2	Sho	wing your working clearly, find the fraction exactl	ly halfway	between $\frac{7}{8}$ and $\frac{9}{10}$.
			Answer	[2]
3	(a)	Write down $\frac{4}{11}$ in recurring decimal form.		
	(b)	Express $2\frac{3}{5}$ as a percentage.	Answer	[1]
			Answer	% [1]

			Answer	[2]
5	Give	en that $-3 \le x \le 2$ and $-7 \le y \le 3$, calculate		
	(a)	the largest possible value of $x - y$,		
	(b)	the smallest possible value of x^2 .	Answer	[1]
	(b)	the smallest possible value of x.		
			Answer	[1]
6	(a)	A train left a station at 21:47 and arrived at its	s destination	at 03:56 the following day.
		How many minutes did the journey take?		
			Answer	minutes [1]
	(b)	Jenny runs 2.88 km in 30 minutes.		
		Calculate her speed in metres per second.		
			Answer	m/s [2]
4E5	N Math	P1 2017 MYE		

7	The cost of a circular ornament, C , is directly	r proportional to the square of its radius, r metres.
	(a) Given that $C = 24$ when $r = 0.2$, form a	n equation connecting C and r .
	(b) Hence, calculate the cost of a circular or	Answer
	(b) Trende, calculate the cost of a chemia off	nament with $r = 0.7$.
		Answer \$[1]
8	For his holiday, Alex changed 2 400 Malaysi when the exchange rate was 1 SGD = 3.20 MY At the end of his holiday, he had 25 SGD left.	ian Ringgits (MYR) to Singapore Dollars (SGD) 'R.
	(a) How much did he spend in Singapore Do	bllars?
		Answer SGD [2]
	(b) He changed his remaining 25 SGD for 77	7 MYR at the end of his holiday.
	What was the exchange rate of MYR to 1	SGD at the time of exchange?
		Answer MYR [1]
E5N	N Math P1 2017 MYE	[Turn over

9		actual engine is 9.6 m long.
	(a)	Find the scale of the model engine to the actual engine in the form 1: <i>n</i> .
		Answer 1:[1
	(b)	Given that the name plate on the model measures 4 cm by 5 cm, calculate the actual are of the name plate on the engine in square metres.
		,
		Answer m² [2
10	(a)	Find the gradient of the straight line L_1 which has the equation $2y - 5x = 4$.
		Answer[1
	(b)	Another straight line L_2 has the equation $3y + 2x - 4 = 0$. It passes through the point $(3k, k+2)$.
		Calculate the value of k .
		Answer $k = \dots [2]$
155)		D1 2017 MVC

11	A metal beam structure weighs 13.2 megagrams and has a volume of 1.1×10^5 cm ³ .
	$(\text{mega} = 10^6)$

(a) Express 13.2 megagrams in grams, giving your answer in standard form.

Answer g [1]

(b) Hence find the density of the structure in g/cm³, giving your answer in standard form.

Answer g/cm³ [2]

Answer[3]

Turn over

The diagram shows a speed-time graph for part of a car's journey.

The retardation of the car between t = 8 and t = 12 is 3.75 m/s².

(a) Find the value of ν .

Answer
$$v = \dots [1]$$

(b) Calculate the total distance travelled by the car in the 12 seconds.

Answer m [2]

Given that $6^x = 9$, where x is a positive integer, find the value of

(a) 6^{-x} ,

Answer[1]

(b) $6^{\frac{x}{2}}$,

Answer[1]

(c) 6^{3x+1}

Answer[2]

4E5N Math P1 2017 MYE

4E5N Math P1 2017 MYE

Solve the inequalities $3x - 2 \le 5x + 1 < 7 - x$, and represent your solution on the number line below.

15	Sol	

$$(a) \qquad \frac{5x+6}{4} = x \, ,$$

(b)
$$3y^2 = 2y$$
.

16 (a) Simplify $\frac{(2a^{-2}b)^3}{\sqrt{16a^2b^8}}$, giving your answer in positive index.

(b) Given that $8^h = \frac{16}{4^k}$, express h in terms of k.

[Turn over

7	(a)	E = {	x:x is an	integer,	where	$40 \le x \le 50$
---	-----	-------	-----------	----------	-------	-------------------

 $P = \{ x : x \text{ is a prime number } \}$

 $Q = \{ x : x \text{ is a multiple of 6 } \}$

(i) List the elements of Q.

	F13
Answer	 . [1]

(ii) List the elements of $(P \cup Q)$ '.

(b) On the Venn diagrams below, draw sets A and B when

(i) $A \cap B = \emptyset$,

Answer (b)(i)

[1]

(ii) $A \subset B$.

Answer (b)(ii)

[1]

Calculate the exact principal amount if the difference between simple interest and compound interest compounded yearly for a period of 3 years at 5% per annum is \$305.

Answer \$ [4]

23 (a) Sketch the graph of $y = -(x-3)^2 + 1$.

(b) State the coordinates of the turning point of the graph $y = -(x-3)^2 + 1$.

Answer (.....)[1]

(c) Write down the equation of the line of symmetry.

Answer[1]

4E5N Math P1 2017 MYE

Turn over

[2]

4 cm A 5 cm E 2 cm

ABCD is a parallelogram. BEF and CDF are straight lines. AB = 4 cm, DF = 2 cm and AE = 5 cm.

(a) By stating your reasons, show that triangle ABE is similar to triangle CFB.

Answer (a)

(b) Calculate BC.

24

[2]

Triangle DFE is also similar to triangle ABE. Given that the area of triangle DFE is 1.5 cm², find the area of triangle ABE.

End of Paper

4E5N Math P1 2017 MYE

Mid-Year Exam 2017 Secondary 4E/5N EM P1 (MARKING SCHEME)

1	(a)	$2\times3^2\times7$ (Ans)	B1
		36.40 (Ans)	B1
2	$\frac{1}{2}\left(\frac{7}{8} + \right)$	$\left(\frac{9}{10}\right)$	M1
	$=\frac{1}{2}\left(\frac{3}{2}\right)$	$\frac{5+36}{40}$ = $\frac{1}{2} \left(\frac{71}{40} \right)$ = $\frac{71}{80}$ (Ans)	A1
3	(a)	0.3636363636 = 0.36 (Ans)	B1
	(b)	$\frac{13}{5} \times 100\% = 260\% \text{ (Ans)}$	B1
4	2 7	2 5	
	$\frac{2}{7} \times \frac{a}{b}$	$=\frac{2}{7}\times\frac{5}{4}$	MI
		$= \frac{5}{14} \text{ (Ans)}$ $(2) - (-7) = 9 \text{ (Ans)}$ $(0)^2 = 0 \text{ (Ans)}$	A1
5	(a)	(2) - (-7) = 9 (Ans)	Bl
		$(0)^2 = 0 \text{ (Ans)}$	BI
6	(a)	21:47 to 03:47 = 6 hours = 360 mins, 03:47 to 03:56 = 9 mins.	D.
	(1)	So total time taken is 369 mins (Ans)	B1
	(b)	2.88×1000 m	M1
		30×60 s	Al
7	(a)	= 1.6 m/s (Ans) $C = kr^2$, where k is a constant.	
'	(a)	$24 = k \times (0.2)^2$ \Rightarrow $k = 600$	M1
		$24 = k \times (0.2) \qquad \Rightarrow \qquad k = 000$	A1
	(b)	$C = 600 r^{2} \text{ (Ans)}$ $C = 600 \times (0.7)^{2} \implies C = 294 (Ans)	B1√
8		$C = 500 \times (0.7) \qquad \Rightarrow \qquad C = 3294 \text{ (ABS)}$	DIV
8	(a)	$\$\frac{2400}{3.20} = \750	MI
		5.20 - \$750 \$25 - \$725 (Apr)	Al
	(b)	∴ \$750 – \$25 = \$725 (Ans)	BI
	(D)	$\frac{77}{25} \text{MYR} = 3.08 \text{ MYR (Ans)}$	
9	(a)	$60 \text{ cm} : 9.6 \text{ m} \Rightarrow 1 \text{ cm} : 0.16 \text{ m} \Rightarrow 1 \text{ cm} : 16 \text{ cm} \therefore n = 16 \text{ (Ans)}$	B1
	(b)	Area of model = 20 cm^2	
		Area scale = $(1 \text{ cm})^2 : (0.16\text{m})^2 \Rightarrow 1 \text{ cm}^2 : 0.0256 \text{ m}^2$	M1
10		:. 20 cm ² represents $20 \times 0.0256 = 0.512 \text{ m}^2 \text{ (Ans)}$	A1
10	(a)	Area scale = (1 cm) ² (0.16m) ² \Rightarrow 1 cm ² (0.0256 m) \therefore 20 cm ² represents 20 × 0.0256 = 0.512 m ² (Ans) $2y = 5x + 4 \Rightarrow y = \frac{5}{2}x + 2 \Rightarrow \text{gradient} = \frac{5}{2} \text{ (Ans)}$ $3(k+2) + 2(3k) = 4 \Rightarrow 3k + 6 + 6k = 4$	B1
	(b)	$3(k+2)+2(3k) = 4 \implies 3k+6+6k = 4$	M1
		$\Rightarrow 9k = -2 \Rightarrow k = -\frac{2}{3} \text{ (Ans)}$	Al
11	(a)	$13.2 \times 10^6 \mathrm{g} = 1.32 \times 10^7 \mathrm{g} (\mathrm{Ans})$	B1
	(b)	1.32×10^7 g	
		Density $= \frac{1.32 \times 10^7 \text{ g}}{1.1 \times 10^5 \text{ cm}^3}$	M1
		= 1.2×10^2 g/cm ³ (Ans) (accept if 1.20×10^2 is written)	A1

		20 THK (M	ar 2017)
12		$\leq 5x+1$ and $5x+1 < 7-x$	N/1
	$-2x \leq 3$	6x < 6	M1
	$x \ge -1$.	1.5	B1√
		$\therefore -1.5 \le x < 1 \text{ (Ans)}$	A1
13	(a)	$\frac{v}{4} = 3.75$ \Rightarrow $v = 15$ m/s (Ans)	B1
		4	
	(b)	Total dist. traveled = Area under graph = $\frac{1}{2} \times (8+12) \times 15$,
		Total dist. traveled – Area under graph $=\frac{-x(8+12)\times13}{2}$	M1√
		=150 m (Ans)	A1
14	(a)	1 1 (4)	B1
		$\frac{1}{6^x} = \frac{1}{9}$ (Ans)	
	(b)	$(x)^{\frac{1}{2}}$ $(x)^{\frac{1}{2}}$	B1
		$\frac{1}{6^x} = \frac{1}{9} \text{ (Ans)}$ $(6^x)^{\frac{1}{2}} = (9)^{\frac{1}{2}} = 3 \text{ (Ans)}$ $6^{3x} \times 6^1 = (6^x)^3 \times 6$ $= (9)^3 \times 6 = 4374 \text{ (Ans)}$) (1
	(c)	$6^{3x} \times 6^1 = (6^x)^3 \times 6$	M1
		$= (9)^{3} \times 6 = 4374 \text{ (Ans)}$	A1
1.5	(-)		M1
15	(a)	5x + 6 = 4x	Al
_	(1-)	$\therefore x = -6 \text{ (Ans)}$	111
	(b)	$3y^2 - 2y = 0$	M1
		y(3y-2)=0	
		$\therefore y = 0 \text{or} y = \frac{2}{3} \text{ (both Ans)}$	A1
16	(a)	$\frac{8a^{-6}b^{3}}{4ab^{4}} = 2a^{-7}b^{-1} \qquad (for removing root and bringing in power)$ $= \frac{2}{a^{7}b} \text{ (Ans)}$ $2^{3h} = \frac{2^{4}}{2^{2k}} \implies 2^{3h} = 2^{4-2k}$	
		$= 2a^{-1}b^{-1} \qquad (for removing root and bringing in power)$	M1
		2	
		$=\frac{1}{a^7b}$ (Ans)	A1
	(b)	24 24 2424	
		$2^{2m} = \frac{1}{2^{2k}} \qquad \Rightarrow \qquad 2^{2m} = 2^{2k}$	M1
-		$\Rightarrow 3h = 4 - 2k \Rightarrow \therefore h = \frac{4 - 2k}{3} \text{ (Ans)}$ $O = \{42, 48\} \text{ (Ans)} \qquad (I mark for both elements)$	
		$\Rightarrow 3h = 4 - 2k \Rightarrow \therefore h = \frac{1}{3} \text{ (Ans)}$	Al
17	(a)(i)	$Q = \{42, 48\}$ (Ans) (1 mark for both elements)	B1
	(a)(ii)	$(P \cup Q)' = \{40, 44, 45, 46, 49, 50\}$ (Ans) (1 mark for all 6 elements)	Bl
	(b)(i)	E	
	, , , ,	3	
		$A \longrightarrow B$	
			B1
	(1) (1)		-
	(b)(ii)	ζ	
		B	
		$\begin{pmatrix} A() \end{pmatrix}$	BI
18	(a)	$(0\times2) + (1\times5) + (2\times1) + (3\times4) + (4\times6) + (5\times2) = 53 \text{ (Ans)}$	B1
	(b)	Mean = $(53 \div 20)$ = 2.65 (Ans)	В1
	(c)	Modal number means 'mode' = 4 (Ans)	B1
	(d)	Position = $20+1$ = 10.5 \Rightarrow 10th and 11th \Rightarrow median = 3 (Ans)	B1
		Position = $\frac{20+1}{2}$ = 10.5 \Rightarrow 10th and 11th \Rightarrow median = 3 (Ans)	

THK (Mar 2017)

		21	201.)
19	(a)	55 + 75 + 23(n-2) = 360	M1
		$130 + 23n - 46 = 360 \qquad \Rightarrow \qquad 23n = 276 \qquad \Rightarrow \qquad n = 12 \text{ (Ans)}$	A1
	(b)	$\angle DCB = 105^{\circ}$ \Rightarrow $2x + 110 + 75 + 105 = 540$	M1
	()	$\Rightarrow 2x = 250 \Rightarrow x = 125^{\circ} \text{ (Ans)}$	A1
20	(a)	$80\% \times 200 = 160$ From graph,	M1
-0	()	$x = 31.6 \mathrm{mins} (\mathrm{Ans})$	Al
	(b)	From graph, when $x = 39$ mins, the cumulative frequency $y = 182$.	AI
	(5)		M1
		Thus, no. of people who spends more than 39 mins is $200-182=18$.	IVII
		∴ percentage of people = $\frac{18}{200} \times 100\%$ = 9 % (Ans)	A1
21	Let x be	e the number of days Jim can repair a car alone.	
		ne takes: $x \text{ days} = 1 \text{ car} \Rightarrow 1 \text{ day} = \frac{1}{x} \text{ car}$	
		one takes: $(x+6)$ days = 1 car \Rightarrow 1 day = $\frac{1}{x+6}$ car	M1
	Jim and	1 Max both takes: 4 days = 1 car \Rightarrow 1 day = $\frac{1}{4}$ car	
	Thus,	$\frac{1}{x} + \frac{1}{x+6} = \frac{1}{4}$	M1
		x x+6 4	
		$\Rightarrow \frac{(x+6)+x}{x(x+6)} = \frac{1}{4} \qquad \Rightarrow \qquad x^2 + 6x = 4(2x+6)$	
		which reduces to $x^2 - 2x - 24 = 0$ (x - 6)(x + 4) = 0	M1
	Llongs	$\therefore x = 6 \text{ or } x = -4 \text{ (reject)}$ Lim takes 6 days to remain a small second of the state of	
	(both A	Jim takes 6 days to repair a car alone, and Max takes 12 days to repair a car alone.	A1
	(BOTH F	xiis)	
		(1 mark can be respectively awarded for equivalent method)	
22	Let the	principal amount be \$x.	-
	1		
	Compo	and Interest – Simple Interest = $x\left(1+\frac{5}{100}\right)^3 - \left(x+\frac{x\times5\times3}{100}\right)$	M1
		(100×15×)	
		$305 = x(1.05)^3 - \left(\frac{100x + 15x}{100}\right)$	M1
		305 = 1.157625x - 1.15x	
		305 = 0.007625x	M1
		$\therefore x = 40000 \text{ (Ans)}$	A1
23	(a)		
	. ,	ν _↑	
		correct symmetrical	В1
		O shape = 1 mark	
		1/2 4	
		• correct intersection of	B1
		x and y -axes = 1 mark	
]	1
1			
	0.5	Franchest and Calling	
	(b) (c)	From sketch graph, max. point = $(3, 1)$ (Ans) x = 3 (Ans)	B1 B1

21

				22		1HK (Mar 2017)
24	(a)	$\angle ABE = \angle CFB$ (alt $\angle BAE = \angle FCB$ (op			,	B1
		∴ triangle ABE is si	milar to triangl	e <i>CFB</i>	(AA property)	В1
	(b)	$\frac{AB}{CF} = \frac{AE}{CB} \implies$	$\frac{4}{6} = \frac{5}{CB}$	\Rightarrow	$4 \times CB = 30$	M1
				\Rightarrow	$\therefore BC = 7.5 \text{ cm (Ans)}$	Al
	(c)	$\left(\frac{DF}{AB}\right)^2 = \frac{1.5}{A_2} \implies$	$\left(\frac{2}{4}\right)^2 = \frac{1.5}{A_2}$			M1
		⇒	$A_2 = 6 \text{ cm}^2 \text{ (}$	Ans)		A1

--- END OF MARKING SCHEME ---

- (b) Given $4r^2 h = 2f ghr^2$, express r in terms of f, g and h. [2]
- (c) Express $\frac{3x^2 + x 10}{2x^2 8}$ as a single fraction in its simplest form. [2]
- (d) Solve $\frac{1}{y-1} \frac{2}{5} = \frac{7}{4y}$. [3]
- (e) Cupcakes are sold at 3 for \$5.Louisa bought m cupcakes and was given a 5% discount.
 - Write an expression, in terms of m, for the amount she paid in dollars. [2]

- Jeria trekked 10 kilometres to a waterfall at an average speed of x kilometres per hour.
 - (a) Write down an expression, in terms of x, for the time taken in hours. [1]
 - (b) For her return journey from the waterfall, Jeria trekked the same 10 kilometres at an average speed of (x+1) kilometres per hour.
 The time taken for her return journey is 30 minutes faster than the time taken for her journey to the waterfall.

Write down an equation in x and show that it simplifies to $x^2 + x - 20 = 0$. [4]

- (c) Solve the equation $x^2 + x 20 = 0$. [3]
- (d) Marianne has 300 minutes to trek to the waterfall and back. The ratio of Jeria's to Marianne's trekking time to the waterfall is 2:3.
 - Find the maximum time, in minutes, Marianne could take for her return journey. [2]

4E5N Math P2 2017 Mid Year Exam

The first four terms in a sequence of numbers are given below.

$$T_1 = 1 = 1$$
 $T_2 = 3 + 5 = 8$
 $T_3 = 7 + 9 + 11 = 27$
 $T_4 = 13 + 15 + 17 + 19 = 64$

- (a) Find T_5 and T_6 . [2]
- (b) What is the name given to the numbers 1, 8, 27, 64, ...? [1]
- (c) How many numbers are added up to give the value of T_n ? [1]
- (d) Find an expression, in terms of n, for the value of T_n . [1]
- (e) Explain why the value of T_n is odd when n is odd and even when n is even. [2]

4 (a) Diagram is not drawn to scale.

A closed container, made by joining a hemisphere of radius 9 cm and a cylinder of length 18 cm, is placed in two rest positions as shown below.

In Position A, the container is horizontal and exactly half filled with water.

In Position B, the half-filled container is held with its axis vertical and the hemisphere at the bottom.

Position A

Position B

- (i) Find the volume of water in the container, leaving your answer in π . [3]
- (ii) Show that the depth of the water, d, in Position B is 15 cm. [3]
- (iii) Find the total surface area of the container in contact with the water in Position B. [2]
- (b) The wrapper of a giant ice-cream cone is formed from joining points A and B of the sector AOB.

[1]

[2]

[2]

- (i) Find the area of sector AOB in terms of π .
- Show that the radius, r, of the ice-cream cone wrapper is 4 cm.
- (iii) Find the volume of the ice-cream cone.

The diagram shows a circle ABCD with centre O. SAT is a tangent to the circle at point A and the line AC intersects the line BD at E. Angle $DAC = 38^{\circ}$ and angle $ACB = 50^{\circ}$.

(a) Find, giving reasons for each answer,

(i) angle OBA,

[2]

(ii) angle OAC,

[1]

(iii) angle SAD,

[1]

(iv) angle CED.

[2]

(b) Given that AB = 15 cm, find

(i) the diameter of the circle,

[2]

(ii) the area of triangle AOB.

[2]

[Turn Over

8

6 Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation

$$y = -\frac{x^2}{3} - \frac{11}{x} + 11.$$

Some corresponding values of x and y, correct to two decimal places, are given in the table.

x	1	1.5	2	3	4	5	6
y	-0.33	2.92	q	4.33	2.92	0.47	-2.83

(a) Find the value of q.

[1]

(b) Using the scale of 2 cm to represent 1 unit on each axis, draw a horizontal x-axis for $0 \le x \le 6$ and a vertical y-axis for $-3 \le y \le 5$.

On your axes, plot the points given in the table and join them with a smooth curve. [3]

- (c) By drawing a tangent, find the gradient of the curve at (1.5, 2.92). [2]
- (d) By drawing a suitable straight line on the same axes, find the solutions to the equation $-\frac{x^2}{3} \frac{11}{x} + 12 = x$. [2]
- (e) Use your graph to find the coordinates of the maximum point of $y = -\frac{x^2}{3} \frac{11}{x} + 11$ in the range of $1 \le x \le 6$.

Tickets to a Korean-pop concert were sold online by an organiser.
The number of tickets sold for each category on Friday and Saturday respectively are summarised in the table below.

Day	Category 1	Category 2	Category 3	Category 4
Friday	135	120	100	105
Saturday	150	140	125	85

- (a) Write down a 2×4 matrix T to represent the number of tickets sold by the organiser.
- (b) The price per ticket is \$228 for Category 1, \$168 for Category 2, \$128 for Category 3 and \$98 for Category 4.

Represent the ticket prices in a column matrix S.

[1]

(c) Evaluate the matrix K = TS.

[2]

(d) State what the elements of K represent.

[1]

(e) The organiser decided to hold another concert on Sunday. The prices per ticket for all categories were increased by 5%.

The number of tickets sold on Sunday is shown in the table below.

Day	Category 1	Category 2	Category 3	Category 4
Sunday	180	200	110	75

Using matrix multiplication, find the total sales revenue on Sunday.

[3]

- 8 (a) In a team of software engineers, there are 12 females and 18 males.

 Two engineers are selected at random, one after another, to attend a global conference.
 - (i) Draw a tree diagram to show the probabilities of the possible outcomes. [2]
 - (ii) Find, as a fraction in its simplest form, the probability that one female and male are selected. [2]
 - (iii) The manager decided to select a third engineer to attend the same conference.

Find the probability that all three engineers are females.

[2]

[1]

[1]

(b) 15 fishermen from Town Koney were asked how many fishes they caught in an 8-hour work day.

The results are shown in the stem-and-leaf diagram.

Stem						Leaf
4	2					
5	1	4	8	8	8	
6		2				
7	2	5	6	7		
8	3					
9	9					

Key: $4 \mid 2 = 42$ fishes

(i) The median number of fishes caught is 62.

Form an inequality to represent the range of possible values of x.

- (ii) Find the percentage of fishermen who caught at most 58 fishes a day. [1]
- (iii) It is given that x = 5.
 - (a) Calculate the standard deviation of the number of fishes.
 - (b) Determine and explain whether the mean is a good indicator of average in this distribution. [2]
 - (c) In Town Hona, the mean and standard deviation of the number of fishes are 68 and 13.2 respectively.

Use this information to comment on one difference between the two towns.

Three jetties M, Q and P are situated around a coastal bay at the same ground level. Jetty M is 1.88 km away at a bearing of 72° from Jetty P. Jetty Q is 1.25 km away at a bearing of 300° from Jetty M.

Find the straight line distance between Jetty Q and P.

[2]

Find the bearing of Jetty O from Jetty P.

[2]

[2]

Ryan rides a water jet ski from Jetty Q towards PM. He wishes to reach PM in the shortest time possible.

Find the distance of the route which allows him to reach in the shortest time.

- (d) A helicopter flies at a constant altitude of 950 m directly above PM.
 - (i) Find the angle of depression of the helicopter to Jetty Q when it is nearest [2]
 - A skydiver jumps off the helicopter when the helicopter is nearest to Q.

Determine whether the angle of elevation of the skydiver is smaller at point Por point M.

Show your workings clearly.

[2]

12

Jerel will commence his Bachelor's Degree in Computing at the National University of Singapore (NUS) this August 2017.

Information that Jerel needs is on the opposite page.

Jerel is planning ahead for his annual cost of living. He decides to stay on-campus to save the daily transportation time of 2 hours every day.

- (a) Calculate his maximum estimated annual cost of living, excluding the vacation [1] period.
- (b) Jerel receives \$800 allowance from his parents every month. To cover all his expenses. he works as a part-time tutor in a learning centre. He is paid \$20 per hour.

On average, find the minimum number of hours he will need to work monthly to cover his cost of living. [3] Give your answer in whole number.

(c) Jerel has to complete four years of education in NUS for his degree. He plans to take a POSB bank loan for his tuition fee payment.

Suggest whether it is more practical for him to take a 5 or 10 year bank loan. Justify the decision you make and show your calculations clearly. [6]

COST OF LIVING

Full-Time Undergraduate Studies (2017)

The annual costs below have been derived based on a conservative estimate for a reasonably comfortable lifestyle, excluding the vacation period.

Item	Annual Estimated Cost
On-Campus accommodation (single/double occupancy)	\$2 625 to \$7 000
Meals	\$2 600
Personal expenses	\$2 200
Transportation within Singapore	\$800
Average cost of books/supplies	\$400

Notes:

- · All amounts stated are in Singapore dollars.
- The costs are calculated on an annual basis, excluding the vacation period.

ANNUAL TUITION FEES

For New Students enrolled in Academic Year 2017/2018

		onal University o	f Singapore er academic year	r
Course	Arts & Social Sciences	Business / Accountancy	Engineering / Computing	Law
Annual Tuition Fees	\$8 050	\$9 450	\$8 050	\$12 500

POSB BANK LOAN

Education Loan Exclusive Promotion!

Key Features

- Lower interest rates of 4.6% per annum with 2% processing fee
- Up to 10 years repayment period which starts after course completion

END OF PAPER

JYSS 4E5N Mid Year 2017 Paper 2

N	0.	Answer	Workings	Marks	*Remarks
1	(a)	$4pq - 15p^2 + 4q^2$	-(3p-2q)(2q+5p)		
			$= -(6pq + 15p^2 - 4q^2 - 10pq)$		
			$= 4pq - 15p^2 + 4q^2$	B1	
	(b)	$r = + \sqrt{2f + h}$	$4r^{2} - h = 2f - ghr^{2}$ $4r^{2} + ghr^{2} = 2f + h$		
		$\sqrt{4+gh}$			
			$r^2(4+gh)=2f+h$	M1	
			$r^2 = \frac{2f + h}{4 + gh}$		
			$r = \pm \sqrt{\frac{2f + h}{4 + gh}}$		
				A1	+1 6
	(c)	$\frac{(3x-5)}{2(x-2)}$	$\frac{3x^2 + x - 10}{2x^2 - 8}$		*1m for correct expansion of
		2(x-2)			either numerator
			$=\frac{(3x-5)(x+2)}{2(x^2-4)}$		or denominator.
			, ,		
			$=\frac{(3x-5)(x+2)}{2(x+2)(x-2)}$	M1	
			=(3x-5)	A 1	
			$\frac{1}{2(x-2)}$	A1	
	(d)	y = 1.70 or -2.57	$= \frac{(3x-5)}{2(x-2)}$ $= \frac{1}{y-1} - \frac{2}{5} = \frac{7}{4y}$		
			y-1 5 4y		
			$\frac{5-2(y-1)}{5(y-1)} = \frac{7}{4y}$		
			$\begin{vmatrix} 5(y-1) & 4y \\ 7-2y & 7 \end{vmatrix}$	M1	
			$\frac{7-2y}{5y-5} = \frac{7}{4y}$	MI	
			$35y - 35 = 28y - 8y^2$		
			$8v^2 + 7v - 35 = 0$		
			$y = \frac{-7 \pm \sqrt{7^2 - 4(8)(-35)}}{2(8)}$		
			$y = \frac{-7 \pm \sqrt{7 - 4(6)(-33)}}{2(8)}$	M1	
			$-7 + \sqrt{1169}$		
			$y = \frac{-7 \pm \sqrt{1169}}{16}$		
			y = 1.70 or $y = -2.57$	Al	
	(e)	$\$\frac{19}{12}m$	m cupcakes cost $\$\frac{5}{3}m$	MI	
		12	Price after discount	1411	
			1000 10		
			$= \frac{95}{100} \times \frac{5}{3}m$		7
			$=$ \$ $\frac{19}{12}m$	A1	Accept $\$1\frac{7}{12}m$
			12		

N	0.	Answer	Workings	Marks	*Remarks
2	(a)	$\frac{10}{x}$ h	$\frac{10}{x}$ h	В1	
	(b)	$x^2 + x - 20 = 0$ (shown)	Time taken for return journey $= \frac{10}{x+1} h$	M1	
			$\frac{10}{x} - \frac{10}{x+1} = \frac{1}{2}$	M1	
			$\frac{10x+10-10x}{x(x+1)} = \frac{1}{2}$	MI	
			$x^{2} + x = 20$ $x^{2} + x - 20 = 0$ (shown)	A1	
	(c)	x = 4 or x = -5	$x^{2} + x - 20 = 0$ $(x - 4)(x + 5) = 0$ $x = 4 \text{ or } x = -5$	M1 A2	*Deduct 1m if student rejects x = -5.
	(d)	75 min	Time taken for Jeria's journey to waterfall = $\frac{10}{4}$ = 2.5 h Time taken for Marianne's journey to waterfall		
			$= \frac{2.5}{2} \times 3$ = 3.75 h = 225 min	M1	
			Maximum time for return journey = 300 - 225 = 75 min	A1	
3	(a)	$T_5 = 21 + 23 + 25 + 3$ $T_5 = 31 + 33 + 35 + 35$		B1 B1	
	(b)	$T_6 = 31 + 33 + 35 + 37 + 39 + 41 = 216$ Perfect Cubes			
	(c)	n		B1	
	(d)	n^3			
	(e)	When n is odd, n^2 will be the produc odd. $n^3 = n^2 \times n = \text{odd } x$	BI	Or equivalent reasonings.	
		When n is even, n^2 will be the product of two even numbers, which will be even. $n^3 = n^2 \times n = \text{even x even} = \text{even.}$			

No.	Answer	Workings	Marks	*Remarks
(a)	$972 \pi \text{ cm}^3$	Volume of cylinder		
(i)		$=\pi(9)^2(18)$		
		$= 1458 \pi$	M1	
		Volume of hemisphere		
		$=\frac{2}{3}\pi(9)^3$		
			M1	
		$=486\pi$	IVII	
		Volume of water		
		$=\frac{1}{2}(1458\pi+486\pi)$		
			A1	
		$= 972 \pi \text{ cm}^3$		
(a)	d = 6 cm	Volume of cylinder		
(ii)	(shown)	$= 972\pi - 486\pi$) N/1	
		$= 486 \pi \mathrm{cm}^3$	M1	
		$\pi(9)^2 h = 486\pi$		
		h = 6 cm	MI	
		$d = 6 + 9 = 15 \mathrm{cm} \mathrm{(shown)}$	A1	
(a)	848 cm ²	Total surface area in contact with		*1m for either
(iii)		water		curved surface
		$= 2\pi(9)^2 + 2\pi(9)(6)$	M1	area of cylinder
		= 848.23	A1	or hemisphere
(1.)	26	$= 848 \text{ cm}^2$	AI	47 1
(b) (i)	96π cm ²	area of sector AOB		*In degree:
(1)		$=\frac{1}{2}(24)^2(\frac{\pi}{3})$		$\pi(24)^2(\frac{60^\circ}{360^\circ})$
		$=96\pi \text{ cm}^2$	В1	
(b)	4 cm	Circumference	-	$= 96\pi \text{ cm}^2$ Alternatively,
(ii)	(shown)	= arc length of sector		$\pi r l = 96\pi$
()	(5110 1111)			$\pi(r)(24) = 96\pi$
		$= 24(\frac{\pi}{3})$ [or in degree]		r = 4 cm
		$= 8 \pi \text{ cm}$	M1	, -, -, -, -, -, -, -, -, -, -, -, -, -,
		$2\pi r = 8\pi$		
		r = 4 cm	A1	
(b)	586 cm ³	Height of cone	1	*Accept 397
(iii)		$=\sqrt{24^2-4^2}$		when using
		$=\sqrt{560}$ cm	M1	$\pi = 3.142$.
		Volume of cone		
		1		
		$=\frac{1}{2}\pi(\sqrt{560})(4)^2$		
		$= 396 \text{ cm}^3$	A1	
		370 0111	AI	

i

N	No.	Answer	Workings	Marks	*Remarks
5	(a) (i)	40°	$\angle AOB = 50^{\circ} \times 2 = 100^{\circ}$ (\angle at centre = 2 \angle at circumference) $\angle ABO = (180^{\circ} - 100^{\circ}) \div 2 = 40^{\circ}$ (base \angle of isos triangle)	M1	,
	(a) (ii)	12°	$\angle OAC = 90^{\circ} - 38^{\circ} - 40^{\circ} = 12^{\circ}$ (\(\angle\) in a semicircle)	В1	Accept alternative method
	(a) (iii)	40°	$\angle SAD = 90^{\circ} - 38^{\circ} - 12^{\circ} = 40^{\circ}$ (tan \perp rad)	B1	Accept alternative method
	(a) (iv)	88°	$\angle CBE = 38^{\circ} \ (\angle \text{ in same segment})$ $\angle CED = 38^{\circ} + 50^{\circ} = 88^{\circ}$ (ext angle of triangle)	M1 A1	Accept alternative method
	(b) (i)	19.6 cm	$\cos 40^{\circ} = \frac{15}{DB}$ $DB = 19.581 \text{ cm}$ $= 19.6 \text{ cm}$	M1 A1	
	(b) (ii)	47.2 cm ²	Radius = $19.581 \div 2 = 9.7905$ Area of AOB = $\frac{1}{2} \times (9.7905)^2 \times \sin 100^{\circ}$ = 47.2 cm^2	M1 A1	

N	No.	Answer	Workings	Marks	*Remarks
6	(a)	q = 4.17		B1	
	(b)	(as attached) Im – correct plotting of point Im – correct scale Im – smooth curve		В3	
	(c)	Gradient $= \frac{4.65 - 1.2}{2 - 1}$ $= 3.9 \pm 0.5$ (Accept values fro	om 3 to 4) efore confirming the acceptable range.	M1 A1	*1m - drawing of line *1m - correct value
	(d)	$-\frac{x^2}{3} - \frac{11}{x} + 12 = x$ $y + 1 = x$ Draw $y = x - 1$		M1 A1	*M1 – drawing of line $y = x - 1$ (not accepted if equation is found but line is not drawn)
	(e)	(2.55, 4.5) (Accept values ±	0.1)	B2	*1m each for x and y coordinates *deduct 1m for non coordinates form answer

No.	Answer	Workings	Marks	*Remarks
7 (a)	T =	100 105 125 85	В1	
(b)	$S = \begin{pmatrix} 228 \\ 168 \\ 128 \\ 98 \end{pmatrix}$		B1	
(c)	$\mathbf{K} = \begin{pmatrix} 74030 \\ 82050 \end{pmatrix}$	$ \begin{aligned} \mathbf{K} &= \mathbf{TS} \\ &= \begin{pmatrix} 135 & 120 & 100 & 105 \\ 150 & 140 & 125 & 85 \end{pmatrix} \begin{pmatrix} 228 \\ 168 \\ 128 \\ 98 \end{pmatrix} \\ &= \begin{pmatrix} 74030 \\ 82050 \end{pmatrix} $	B2	B1 – 74030 B1 – 82050
(d)	K represents the t	otal ticket sales for all categories on	B1	B1 02030
(e)	K represents the terriday and Saturd \$100873.50	ay respectively. Prices of tickets of each category on Sunday $= 1.05 \begin{pmatrix} 228 \\ 168 \\ 128 \\ 98 \end{pmatrix}$ $= \begin{pmatrix} 239.40 \\ 176.40 \\ 134.40 \\ 102.90 \end{pmatrix}$ Total sales revenue $= \begin{pmatrix} 180 & 200 & 110 & 75 \end{pmatrix} \begin{pmatrix} 239.40 \\ 176.40 \\ 134.40 \\ 102.90 \end{pmatrix}$ $= (100873.50)$ Total sales revenue = \$100873.50	9.40 6.40 4.40 2.90	*0m if no matrix multiplication is used. *M2 can be awarded if at least 1 matrix multiplication is used. *Not to penalize for 1d.p. within matrix ^can accept: 1.05(228 168 128 98 100 110 75 108 10

N	lo.	Answer	Workings	Marks	*Remarks
8	(a) (i)	$\frac{\frac{12}{30}}{\frac{18}{30}} $ F	$ \begin{array}{c c} \frac{11}{29} & F \\ \hline \frac{18}{29} & M \\ \hline \frac{17}{29} & M \end{array} $	B2	Deduct 1m for each wrong probability. Do not penalize marks if fractions are not reduced to simplest form.
	(a) (ii)	72 145	P(one female one male) = P(F, M) + P(M, F) = $\frac{2}{5} \times \frac{18}{29} + \frac{3}{5} \times \frac{12}{29}$ = $\frac{72}{145}$	M1 A1	
	(a) (iii)	11 203	$P(F, F, F)$ $= \frac{2}{5} \times \frac{11}{29} \times \frac{10}{28}$ $= \frac{11}{203}$	M1	
	(b) (i)	62 ≤ x ≤ 69		В1	
	(b) (ii)	40%	$\frac{6}{15} \times 100 = 40\%$	В1	
	(b) (iii) (a)	13.9	SD $= \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$ $= \sqrt{\frac{68246}{15} - \left(\frac{990}{15}\right)^2}$ $= 13.9 \text{ fishes (3 sf)}$	BI	
	(iii) (b) Hence the mean is not this distribution.		r in the data (99 fish). s not a good indicator of average in	M1 A1	1m - yes / no 1m - reason *0 m given if no / wrong reason is given.
	(b) (iii) (c)	in Town Hona can or The <u>standard dev</u>	er in Town Hona, hence the fishermen ught more fishes in a day. riation is lower in Town Hona, hence the scaught by the fishermen in Town sistent.	ві√	Follow through their SD in part (b)(iii)(a)

]	No.	Answer	Workings	Marks	*Remarks
9	(a)	1.40 km	$\angle QMP = 48^{\circ}$		
			By Cosine Rule		
			$QP = \sqrt{1.25^2 + 1.88^2 - 2 \times 1.25 \times 1.88 \times \cos 48^\circ}$	M1	
			= 1.39713 km		
			= 1.40 km	A1	
	(b)	030.3°	By Sine Rule		
			$\frac{1.25}{\sin QPM} = \frac{1.39713}{\sin 48^{\circ}}$		
			sin QPM sin 48°	M1	
			$\angle QPM = 41.6735^{\circ} = 41.7^{\circ}$		
			Bearing of Q from P		
			$=72^{\circ}-41.6735^{\circ}$		
			= 30.3265°		
			= 030.3°	A1	
	(c)	0.929 km	$\sin 48^\circ = \frac{QX}{1.25}$	M1	
				IVII	-
			Shortest distance QX = 0.92893 km		
			= 0.929 km	A1	
	(d)	45.6°	0.95		
	(i)		$\tan \theta = \frac{0.95}{0.92893}$	M1	
			$\theta = 45.6^{\circ}$	A1	
	(d)	*X is the point of shortest distance from Q to PM.			1m - reason
	(ii)		X (1.044 km) is <u>longer</u> than the distance of XM	M1	1m - Point P
			Hence, angle of elevation from Point P to the	A1	
		skydiver is sr	maller.		*Award 0 m
					if only
					calculations
					given
					without any
					explanations
					or
		1			justifications

	lo.	Answer	Workings	Marks	*Remarks
10	(a)	\$13000	Maximum estimated annual cost of living \$7000 + \$2600 + \$2200 + \$400 + \$800 = \$13000	B1	
	(b)	15 hours	Annual expenses that he has to pay on his own = $$13000 - 800×12 = $$3400$	MI	*Accept reasonable calculations continued from
			Per month = $$3400 \div 12 = 283.333	M1	part (a)
			Maximum number of hours = \$283.333 ÷ 20 = 14.167		
		m . 1 m	≈ 15 hours	Al	
	(c)	Including 2%	fee (4 years) = $\$8050 \times 4 = \32200 processing fee = $\$32200 \times \frac{102}{100} = \32844	M1	
		20.000	red $I = \frac{PRT}{100} = \frac{32844 \times 4.6 \times 5}{100} = \7554.12	M1	
		= \$7554.12 +	he has to pay $$32844 = 40398.12 nonth $\div 5 \div 12 = 673.302 Not needed if reasoning is (1).	> M1	
		Interest incuring $I = \frac{PRT}{100} = \frac{3}{100}$ Total amount	red $\frac{2844 \times 4.6 \times 10}{100} = \15108.24 he has to pay	M1	
		= \$15108.24 Amount per r = \$47952.24	+ \$32844 = \$47952.24	> _{M1}	
		loan. However, the	pay lesser per month if he goes for a 10-year total interest for a 5-year loan is \$7554.12 at of a 10-year loan.		o.e.
		It will be mor	e practical for him to go for a 5-year loan.	A1	
		\$7554.12 high	the total interest for a 10-year loan is ner than that of a 5-year loan, he gets to pay amount of \$400 a month for 10 years.		
		It will be mor	e practical for him to go for a 10-year loan.		